

FOSR-TR- 80 - 03 40

LEVEL

RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES .

SCHOOL OF ENGINEERING AND APPLIED SCIENCE

AFOSR-79-0024

UNIVERSITY OF VIRGINIA

Charlottesville, Virginia 22901

A Final Report

ANALYSIS OF COMPUTATIONAL METHODS FOR NONLINEAR PARABOLIC DIFFERENTIAL SYSTEMS

Submitted to:

Air Force Office of Scientific Research Bolling Air Force Base Washington, D. C. 20332

Submitted by:

R. Leonard Brown Assistant Professor

Report No. UVA/525629/AMCS80/101

April 1980

80 5 14 072

Approved for public release; distribution un imited.

IC FILE COPY

RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES

Members of the faculty who teach at the undergraduate and graduate levels and a number of professional engineers and scientists whose primary activity is research generate and conduct the investigations that make up the school's research program. The School of Engineering and Applied Science of the University of Virginia believes that research goes hand in hand with teaching. Early in the development of its graduate training program, the School recognized that men and women engaged in research should be as free as possible of the administrative duties involved in sponsored research. In 1959, therefore, the Research Laboratories for the Engineering Sciences (RLES) was established and assigned the administrative responsibility for such research within the School.

The director of RLES-himself a faculty member and researcher-maintains familiarity with the support requirements of the research under way. He is aided by an Academic Advisory Committee made up of a faculty representative from each academic department of the School. This Committee serves to inform RLES of the needs and perspectives of the research program.

In addition to administrative support, RLES is charged with providing certain technical assistance. Because it is not practical for each department to become self-sufficient in all phases of the supporting technology essential to present-day research, RLES makes services available through the following support groups: Machine Shop, Instrumentation, Facilities Services, Publications (including photographic facilities), and Computer Terminal Maintenance.

ANALYSIS OF COMPUTATIONAL METHODS FOR NONLINEAR PARABOLIC DIFFERENTIAL SYSTEMS.

Submitted to:

Air Force Office of Scientific Research Bolling Air Force Base Washington, D. C. 20332

Submitted by:

R. Leonard Brown

Assistant Protessor

Apr 10 9 56/

15 VAFOSE-79-1:=4

Department of Applied Mathematics and Computer Science
RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA

(18 111.11 19/1-84-0=4D

*Current Title and Address:

Assistant Professor of Computer Science Mathematical Science Department Drexel University Philadelphia, PA 19104

is محادث مست ماند.

. Juchn

. D. Linda. Action Officer action Officer

Report No. UVA/525629/AMCS80/101

Copy No. 7

April 1980

411/8/12

Acknowledgments

The research reported herein is based on my exposure to problems in modeling reentry vehicles which occured during a Summer appointment as a USAF-ASEE Fellow. Dr. John C. Adams, Jr., of the VonKarmann Facility at Arnold Engineering Development Center, showed me what needs to be done, how it is being done now, and encouraged me to look for better ways to model reentry vehicles. With financial support from AFOSR, I have made a first pass at finding out why the numerical solution of the nonlinear equations involved in flow on a cone is so difficult, and am now in a position to do more on improving the behavior of the numerical solutions. I could not have done so much without the help of two graduate students, Kurt R. Kovach and Jeffrey L. Popyack. Also, I moved from the University of Virginia to Drexel University in August, 1979, and Drexel has continued to support this research with several thousands of dollars in computer funds.

Acce	sion For
DDC : United	GRARI FAB 10 Uniced 1 Circution
Ey_ Dist:	ibution/
Avei	lability Godes
Dist	Availand/or special
PI	

1. PROBLEM DESCRIPTION

Many important problems in fluid dynamics, among other areas, are modeled by nonlinear parabolic differential systems with initial values given in one Findependent variable x, and boundary values in the remaining dependent variables. Hyperbolic systems can sometimes be treated as a special case. For example, the inviscid flow case of the Navier-Stokes equations [1] is a hyperbolic system, which the viscous flow case is elliptical. A survey of currently used numerical methods is in Richtmeyer and Morton [2]. In subsonic flow cases, the nonlinear terms are small enough to be ignored, but these terms must be included in supersonic and hypersonic flow. These numerical calculations usually involve a finite difference mesh over the boundary value problem variables, resulting in a space discretization matrix equation which for the nonlinear system varies at each step in x, the independent variable representing time in the dynamic case or one of the space variable for the steady state case. Then this nonlinear system is solved as an initial value problem in x. The initial value problem is usually solved by a one step implicit method for reasons of cost and stability. Some methods based on finite element methods for the boundary value problem can be used, but successful methods are only available for the linear cases, such as subsonic flow problems [3].

All of these methods require large amounts of computer memory to store the matrices, and, particularly in the nonlinear case where the matrices must be reevaluated often, large amounts of time. Therefore, it is desirable to investigate the relationship of various aspects of these numerical methods in an effort to reduce the total computation time with no loss in accuracy or significant increase in storage requirements. To give an overview of the current state of development, a sample problem which has been studied by the principal investigator [4] is described.

The incompressible fluid flow around a cone at hypersonic speed and angle of attack $\alpha \geq 0$ is modeled by a parabolic system of nonlinear partial differential equations expressing conservation of energy, mass, and momentum, plus an algebraic equation of state. Typical flow variables are functions of density, velocity and energy. The asymptotic (steady-state) solution in three dimensions is sought. A suitable coordinate system for a cone shaped object uses the variables x, the length from the tip along the cone generator; η the normal to the surface relative to the bow shock stand-off distance ($\eta = \xi/d(x,\phi)$ where ξ is perpendicular to x and d is the bow shock stand-off distance computed from theory); and $\phi = 180^{\circ}$ at the leeward side. Separation is likely to occur at the leeward side at significant angle of attack $\alpha > 0$, and standard numerical methods have proven inadequate to model this case, so special computer methods have been developed for it. See Figure 1.

Lubard and Helliwell [5] have treated this problem as a parabolic boundary value problem in ϕ and η since theoretical results are available on the behavior of the bow shock, and as an initial value problem in x which allows a marching type numerical solution to be generated given an initial condition away from the point x=0. They treated the non-linear system

$$\frac{\partial U}{\partial x} + \frac{\partial F(U)}{\partial \eta} + \frac{\partial G(U)}{\partial \phi} = \frac{\partial V(U, \partial U/\partial \eta, \partial U/\partial \phi)}{\partial \eta} + \frac{\partial W(U, \partial U/\partial \eta, \partial U/\partial \phi)}{\partial \phi}$$
(1)

where U is the m-dimensional state vector, F and G are given vector

Fig. 1 Coordinate System

functions of U, and V and W are vector functions of U and its partial derivatives. Steady state Navier-Stokes equations are a special case of (1). For the purpose of illustration, let the right hand side of (1) be 0, giving the equation for inviscid flow. A discussion of boundary and initial conditions can be found in [5]. By using a finite difference scheme in η and φ for the boundary value problem, a one-step implicit integration scheme in x can be employed to solve the initial value problem. For the implementation of Lubard and Helliwell [5], central differences at each x value

$$\frac{\partial U}{\partial \eta} = \frac{1}{2\Delta \eta} \left(U(\eta_{j+1}, \phi_k) - U(\eta_{j-1}, \phi_k) \right)$$
 (2)

$$\frac{\partial^{2} U}{\partial \phi^{2}} = \frac{1}{\Delta \phi^{2}} \left(U(\eta_{j}, \phi_{k-1}) - 2U(\eta_{j}, \phi_{k}) + U(\eta_{j}, \phi_{k+1}) \right)$$
(3)

are used with the Backward Euler implicit formula

$$U(x_{i+1}, n_i, \phi_k) = U(x_i, n_i, \phi_k) + \Delta x \partial U(x_{i+1}, n_i, \phi_k) / \partial x.$$
 (4)

Stability considerations derived from considering the numerical solution of an associated linearized system of equations leads to both lower and upper bounds on Δx as a function of $\Delta \eta$ and $\Delta \phi$.

To understand the implementation, consider the linearized problem for $A = \partial F/\partial U$ and $B = \partial G/\partial U$ given as

$$\frac{\partial U}{\partial x} + A \frac{\partial U}{\partial \eta} + B \frac{\partial U}{\partial \phi} = 0. \tag{5}$$

Applying the trapezoidal rule $U(x_{i+1}) = U(x_i) + \frac{\Delta x}{2} \left(\frac{\partial U(x_{i+1})}{\partial x} + \frac{\partial U(x_i)}{\partial x} \right)$, a more accurate implicit scheme than Backward Euler, and using a truncated Taylor Series for F(U) and G(U) given by

$$F(U(x_{i+1})) = F^{i+1} = F^{i} + A^{i} (U(x_{i+1}) - U(x_{i})) + O(\Delta x^{2})$$

$$G(U(x_{i+1})) = G^{i+1} = G^{i} + B^{i} (U(x_{i+1}) - U(x_{i})) + O(\Delta x^{2})$$

yields the system of linear equations

$$\boxed{1 + \frac{\Delta x}{2} \left(\frac{\partial A^{i}}{\partial n} + \frac{\partial B^{i}}{\partial \phi} \right)} \quad U^{i+1} = \boxed{1 + \frac{\Delta x}{2} \left(\frac{\partial A^{i}}{\partial n} + \frac{\partial B^{i}}{\partial \phi} \right)} \quad U^{i} - \Delta x \left(\frac{\partial F}{\partial n} + \frac{\partial G}{\partial \phi} \right). \quad (6)$$

This large, sparse system can be solved by methods such as the alternating direction implicit (ADI) method of Douglas [6] which solves only the equation in η first, then the equations in ϕ . Beam and Warming [7] introduce an error of $(\Delta x)^3$ in an approximate factorization scheme based on Peaceman and Rachford [8] by replacing (6) with

$$\left(1 + \frac{\Delta x}{2} \frac{\partial A^{i}}{\partial \eta}\right) \left(1 + \frac{\Delta x}{2} \frac{\partial B^{i}}{\partial \phi}\right) U^{i+1} = \left(1 + \frac{\Delta x}{2} \frac{\partial A^{i}}{\partial \eta}\right) \left(1 + \frac{\Delta x}{2} \frac{\partial B^{i}}{\partial \phi}\right) U^{i} - \Delta x \left(\frac{\partial F}{\partial \eta} + \frac{\partial G}{\partial \phi}\right) + O(\Delta x^{3}).$$
(7)

Since the error introduced is of the same order Δx^3 as the error in the trapezoidal rule, stability is not affected. This equation can then be solved in two levels

$$\left(I + \frac{\Delta x}{2} \frac{\partial A^{i}}{\partial \eta}\right) \Delta U^{*} = -\Delta x \left(\frac{\partial F}{\partial \eta} + \frac{\partial G}{\partial \phi}\right),$$

$$\left(I + \frac{\Delta x}{2} \frac{\partial B^{i}}{\partial \phi}\right) \Delta U^{i} = \Delta U^{*}$$

$$U^{i+1} = U^{i} + \Delta U^{i}.$$

This method has several disadvantages. If used with a more accurate difference method, the error introduced in the factorization will lower the error order of the method; however, if used with a lower order method such as the Backward Euler, good results could be expected.

However, Lubard and Helliwell note that the difference in ϕ near $\eta=0$ has a singularity there, and use instead a method that uses the factorization (7) in η but solves for each set of solutions at each ϕ_k in sequence $\phi_0=0^\circ$ to $\phi_k=180^\circ$ in steps of $\Delta\phi$. This is done iteratively until the computation converges. At each ϕ_k , the resulting system of linear equations is an η by η block tridiagonal matrix of block size η by η where η is and η and η and η and η solution with each element of the solution replaced by a $(\eta*\eta)^2$ size linear equation.

In actual practice, the equations are rewritten to compute the change ΔU in the current value of $U(x_{j+1})$. This is called the delta form of the corrector and yields a linear block tridiagonal system

$$\begin{bmatrix}
B_1 & C_1 \\
A_2 & B_2 & C_2 \\
& \ddots & A_n B_n
\end{bmatrix} \quad \Delta U = RHS$$
(8)

where A_i , B_i , and C_i are square m by m matrices. RHS is a m by n corrector for $U(x_{i+1})$.

2. Research Conducted

A portable program called HVSL [9], which is a modified version of the Lubard and Helliwell code and is used at Arnold Engineering Development Center (AEDC), was available for experimentation. It is portable since the initial state of the system is read in, in part, from cards and then, after solving a boundary value problem, all initial values at 50 η points and 19 ϕ points are known. These can be changed by an interpolating procedure included in the code. For experimental purposes, the number of ϕ values from windward (0°) to leeward (180°) was reduced from 19 to 3. Validation tests were run at angle of attack $\alpha = 1^{\circ}$ to determine if this modified system produced the same solution. At least three decimal place agreement was observed at $\phi = 0^{\circ}$, 90°, and 180°, so it was concluded that this much less expensive test program was adequate for testing modifications to HVSL.

The following changes were made to HVSL.

1. The initial (predicted) value of $U(x_{j+1})$, representing the solution $U(x_{j+1}, \eta_k, \phi_\ell)$ for k = 1, NK, $\ell = 1$, NL by the Euler explicit method, is computed by

$$U(x_{j+1}) = U(x_{j}) + (U(x_{j}) - U(x_{j-1})) * \Delta x_{j+1}/\Delta x_{j}.$$

While this appears to be using a finite difference to approximate the derivative $\dot{U}(x_j) = dU(x_j)/dx$, it is actually the correct value since, if Euler's implicit formula is iterated to convergence,

$$U(x_{j}) = U(x_{j-1}) + \Delta x_{j} \dot{U}(x_{j}).$$
 (9)

The modified program stores the derivative term $\Delta x_j \dot{U}(x_j)$ in ΔU^0 after the last evaluation and correction of whatever numerical method is in use, and this is used in an Euler explicit predictor. No additional storage

is required.

2. The check for convergence in subroutine IMPETA checks to see if the right hand side of the matrix equation (8) satisfies

$$\begin{array}{l}
6 \\
\Sigma \\
\text{RHS}_{i,j,k,1}^{2} \leq 6*10^{-6}
\end{array}$$

for all η_k , for each ϕ_ℓ , $\ell=1$, NL, for convergence at x_j . The subscript i refers to the six state variables. In test runs, no calculation ever terminated due to meeting this convergence test, but instead the maximum number of iterations were used. A more appropriate convergence criterion would be to stop when the last corrector did not make any changes in the third decimal place of any variable, and this relative change criterion was implemented.

3. The Lubard and Helliwell code uses the Backward Fuler corrector

$$U(x_{j+1}) = U(x_j) + \Delta x \dot{U}(x_{j+1})$$

to calculate successively better approximations to $U(\mathbf{x}_{j+1})$. Using the the delta form, it is seen that

$$\Delta U^{0} = U^{0}(x_{j+1}) - U(x_{j}) = \Delta x \dot{U}(x_{j})$$

$$\Delta U^{1} = U^{1}(x_{j+1}) - U^{0}(x_{j+1})$$

$$= U(x_{j}) + \Delta x \dot{U}^{0}(x_{j+1}) - (U(x_{j}) + \Delta x \dot{U}(x_{j}))$$

$$= \Delta x (\dot{U}^{0}(x_{j+1}) - \dot{U}(x_{j}))$$

$$\Delta U^{i} = U^{i}(x_{j+1}) - U^{i-1}(x_{j+1})$$

$$= \Delta x (\dot{U}^{i-1}(x_{j+1}) - \dot{U}^{i-2}(x_{j+1})), \quad i = 2, ..., 5.$$
(12)

Since this calculation is already programmed, ΔU can be used as is in two different corrector formulas. The Trapzoidal Corrector

$$\mathbf{U}^{i}(\mathbf{x}_{j+1}) = \mathbf{U}(\mathbf{x}_{j}) + \Delta \mathbf{x}(\dot{\mathbf{U}}^{i-1}(\mathbf{x}_{j}) + \dot{\mathbf{U}}(\mathbf{x}_{j}))/2.$$

can be implemented by

$$U^{1}(\mathbf{x}_{j+1}) = U(\mathbf{x}_{j}) + \Delta \mathbf{x}(\dot{\mathbf{U}}^{0}(\mathbf{x}_{j+1}) + \dot{\mathbf{U}}(\mathbf{x}_{j}))/2.$$

$$= U(\mathbf{x}_{j}) + \Delta \mathbf{x} \dot{\mathbf{U}}(\mathbf{x}_{j}) + \Delta \mathbf{x}(\dot{\mathbf{U}}^{0}(\mathbf{x}_{j+1}) - \dot{\mathbf{U}}(\mathbf{x}_{j}))/2.$$

$$= U^{0}(\mathbf{x}_{j+1}) + \Delta U^{1}/2. \tag{13}$$

and then

The Iterated Multistep Method (IMS) due to Hyman [10] is:

$$\begin{split} & u^{0}(x_{j+1}) = u(x_{j}) + \Delta x \ \dot{u}(x_{j}) \\ & u^{1}(x_{j+1}) = u(x_{j}) + \Delta x (\dot{u}^{0}(x_{j+1}) + \dot{u}(x_{j}))/2. \\ & u^{i}(x_{j+1}) = u^{i-1}(x_{j+1}) + \Delta x (\dot{u}^{i-1}(x_{j+1}) - \dot{u}^{i-2}(x_{j+1}))/(i+1), \quad i = 2,3,4,.... \end{split}$$

This can be formulated the same as the Trapezoidal method for i=0,1, and then

$$U^{i}(x_{j+1}) = U^{i-1}(x_{j+1}) + (\Delta U^{i})/(i+1), \quad i = 2,3,....$$
 (15)

These alternative methods have both stability and accuracy advantages over the implicit Euler corrector. The Trapezoidal corrector, when applied to the <u>linear</u> complex equation

$$\dot{\mathbf{U}} = \lambda \mathbf{U}, \tag{16}$$

with nonzero initial value of U_0 , damps out any error introduced by either machine roundoff error or the discretization of the solution with respect to x for any $\Delta x > 0$ as long as λ has a negative real part. This is called A-stability [11]. The exact solution to (16), $\exp(\lambda x)U_0$, behaves the same way since an initial error d_0 yields the solution $\exp(\lambda x)U_0 + \exp(\lambda x)d_0$, and thus the error contribution goes to zero as x goes to infinity if λ has negative real part. This assumes that the Trapezoidal corrector is solved exactly, which is possible in the linear case since

$$U_{i+1} = (1 + \Delta x \lambda/2)/(1 - \Delta x \lambda/2) U_{i}.$$

Stability behavior is somewhat different if \mathbf{U}_{i+1} is solved iteratively, as must be the case in a nonlinear equation. Thus, the stability behavior of the trapezoidal corrector should be investigated further.

The accuracy of the Trapezoidal corrector is based on the local discretization error, which is the size of the error in $\mathbf{U_{i+1}}$ if $\mathbf{U_i}$ were the correct solution. This is proportional to $\Delta \mathbf{x}^2$ for the implicit Euler corrector, but to $\Delta \mathbf{x}^3$ for the Trapezoidal corrector. Thus, the Trapezoidal formula is more accurate.

The IMS method, applied to (16), has the property that each successive corrector iteration increases the stability region, i.e. $\Delta x \lambda$ such that errors introduced are not increasing in size as the calculation proceeds.

Figure 2. Linear Stability analysis of Iterated multistep method. Consecutively larger figures are

U¹ for i = 0,1,2,3.

See Figure 2. Also, in the linear case only, each application of the IMS corrector equation increases the accuracy, i.e. the discretization error of $U^{\hat{\mathbf{I}}}$ is proportional to $\Delta x^{\hat{\mathbf{I}}+1}$. In the nonlinear case, the error term is similar to that of the Trapezoidal corrector.

The above changes were made to the HVSL test program, and the resulting values were compared to the original program. It was noted that none of the test cases achieved convergence, either the old or new convergence criterion. However, all significant numerical values did agree to two decimal places, so it was concluded that there was a marginal stability problem, and the stability analysis in [12] was insufficient to explain the phenomenon since that analysis was based on linearizing the system and inspecting the eigenvalues of the resulting Jacobian matrices. Therefore, a simpler test case involving only one space variable and time as the independent variable was used to study the three methods. The nonlinear problem has properties similar to the HVSL problem, and uses the same discretization as the Lubard and Helliwell method.

The quasi-one-dimensional time dependent flow of an inviscid perfect gas through a converging-diverging nozzle use the variables:

x = distance, normalized to [0.,1.],

A(x) = nozzle cross-sectional area,

$$U = \begin{bmatrix} \frac{\rho}{m} \\ \bar{e} \end{bmatrix}$$

where the state variables are ρ , the gas density, $\overline{m}=\rho U$ where U is the velocity along the x axis, and $\overline{e}=\rho(e+U^2/2)$ for $e=c_V^T$, where T is the temperature and c_V^T is the gas constant. Thus, $T=(e-m^2/(2\rho))/(\rho c_V^T)$.

The equations are

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = G \tag{17}$$

where

$$F = \begin{bmatrix} \overline{m} \\ \rho RT + \overline{m}^2/\rho \\ \overline{m} \overline{e}/\rho + \overline{m}RT \end{bmatrix}$$

and

$$G = - \overline{m} d(\ln A)/dx$$

$$- \overline{m}^2 d(\ln A)/dx/\rho$$

$$- \overline{m}(\overline{e}/\rho + RT) d(\ln A)/dx$$

A working version of this program was provided by Dr. John C. Adams of AEDC. The program linearized (17) with respect to t, giving

$$\frac{dU}{dt} + \frac{\partial F}{\partial U}\frac{dU}{dx} = G \tag{18}$$

and replacing $\frac{\partial U}{\partial x}$ by finite difference approximations over a net of 101 equally spaced points. Thus, the result is a system of 303 ordinary differential equations in t, with algebraic boundary condition consistent with the method of characteristics solution in one dimension at the inlet, and extrapolation of supersonic outflow at the exit. The resulting block tridiagonal system is

$$\begin{bmatrix} B_1 & C_1 \\ A_2 & B_2 & C_2 \\ & \ddots \\ & & A_n & B_n \end{bmatrix} \Delta U = RHS$$

for 3 by 3 matrices A_i , B_i , C_i , $i=1,\ldots,101$. The linearized initial value problem is solved exactly, once each time step. The numerical method

is parametrized as [13]

$$\frac{dU(t_n)}{dt} = \frac{1}{\Delta t} \frac{(1+z) \Delta - z\nabla}{1+\Theta\Delta} U(t_n)$$

where Δ is the forward difference operator, ∇ is the backward difference operator, and Θ = 1, z = 0 yields the exact implicit Euler solution of the linearized problem; Θ = 1/2, z = 0 yields the exact trapezoidal solution; and Θ = 0, z = 0 would yield the explicit Euler predictor except the program would divide by zero if Θ = 0. This does not emulate the iterative solution technique in the Lubard and Helliwell code, so the program was rewritten to use an explicit Euler predictor approximated by Θ = 10^{-r}, r large, then successive linearizations and computations of ΔU^{i} consistent with the implicit Euler technique used in HVSL. Then either ΔU^{i} could be used as is to get the implicit Euler predictor, or else equations (10, 13, 14) for Trapezoidal corrector or (10, 13, 15) for IMS corrector could be used.

The results for the Trapezoidal and IMS test runs, using a constant 4 corrector iterations, agreed to 4 decimal places with the original program at the 4th time step, and to 2 decimal places after 15 time steps (the equations are being integrated to steady state). The velocity U, which depends on e and p, becomes unstable by the 4th time step when the implicit Euler corrector was iterated 4 times, by the 10th time step when iterated only once. Thus, the stability properties of the linearized equation are seen to be different from those of the nonlinear equation. Note that the step size Δt was chosen to meet the Courant-Friedrich-Lewy criteria for the linearized implicit Euler formula, yet this step size does not work with the nonlinear equation it is based on. This confirms that a stability problem exists.

A new technique has been developed to study stability of ordinary differential equation integrators as they are applied to nonlinear differential systems [14]. The analysis can usually be carried out using an interactive graphics package called STAN. If the user knows an approximate equilibrium point U^* where dU/dt = 0, then it is possible to investigate the stability of any two dimensional subsystem by varying only two values, i.e., we investigate the system $u = (u_i, u_i) = U^* + e_i d_i + e_i d_i$ where e_i, e_i are the i-th and j-th unit vectors and d_i , d_i are scalar perturbations. This allows the contractivity region defined by Dahlquist [15] to be mapped. The boundary of this region consists of points at which the forward difference in the independent variable t of a quadratic function V(u) = u*Qu is zero. V(u) is chosen in the same way as the Liapunov stability function is chosen [16], using the Jacobian matrix of the derivative with respect to the vector $u = (u_i, u_i)$. Thus, if this boundary is found using the exact solution, then any solution $U(t_0 + \Delta t)$ with initial conditions $U(t_0)$ on the boundary has the property $V(u(t_0 + \Delta t)) =$ $V(u(t_0))$. This can be further refined to compute a stability region inside which $u(t_0 + n\Delta t)$ will stay for any n, at least in the autonomous case. Similar regions can be generated for the numerical solutions using the same Δt . Figure (3) illustrates the results for the linear case:

$$y = u_1 + iu_2$$

 $\dot{y} = \lambda y, \quad y(0) = (u_1, u_2)$
 $\lambda = \ln(y_0)/\Delta t$ (19)

with exact solution at mesh points $y(t_n) = y_0^{n+1}$. For $V(u) = u_1^2 + u_2^2$, the contractivity region and stability region are both the unit circle about 0.

Figure 3A. Non-Linear Stability analysis of y' = λy:

Contractivity region for a) explicit Euler,
b) trapezoidal with one corrector iteration,
c) trapezoidal with 2 corrector iterations.

Figure 3B. Non-Linear Stability Analysis of y' = λy
a) explicit Euler predictor, one implicit
Euler corrector b) same predictor, 2
corrector iterations.

Figure 3C. Non-Linear Stability analysis of y' = \(\foatsymbol{y} \) for the iterated multistep method for a) 2 steps b) 3 steps c) 4 steps d) 5 steps.

The point (0,0) corresponds to the point at infinity in the linear analysis described earlier, and the point (1,0) corresponds to the origin in the linear analysis.

SERIES [17], written in PASCAL, is used. It can accept up to 20 first order ordinary differential equations as input and will write a FORTRAN subroutine SOL(T, Y, YO, IND) which, when called for a certain value of t = T, given initial conditions of u(t) at t = 0 stored in the FORTRAN array YO, will recursively generate the coefficients of the power series solution of u(t) starting with the constant terms stored in YO, and output in the array Y the solution u(t), or else indicate that the radius of convergence of the series is not greater than t by setting IND to certain nonzero values. Of course, not every possible function is included, but the trigonometric, logorithmic, and exponential functions of the dependent variables are allowed, as well as most FORTRAN functions of the independent variable. This program has been tested on numerous nonlinear systems and the resulting subroutine SOL has been interfaced to STAN, but no system of partial differential equations has been included.

Two different stability analyses were attempted for the converging-diverging nozzle example. In one, two interior stations were isolated, and the forward divided difference was used on all variables that were differentiated with respect to x. Letting two consecutive ρ values be called Rl and R2, two consecutive \bar{m} values be XMl and XM2, and two consecutive \bar{e} values be El and E2, a system of six state variables would result. However, temperature, which could be considered constant but is actually a slowly varying function of \bar{e} , \bar{m} , and ρ , and $d(\ln A)/dx$, a constant, must be accounted for at the two points. By setting their derivatives with respect to t to zero, these constants can be input to STAN along with the state

variables. Let XK1 and XK2 be consecutive values of d(ln A)/dx and TMP1 and TMP2 be temperature values, and denote the derivative of a variable Z by Z·, then the resulting input to SERIES is:

```
R1.=-(XM2-XM1)/DX-XM1*XK1;

R2.=-(XM2-XM1)/DX-XM2*XK2;

XM1.=-XM1*XM1/R1*XK1+((XM1/R1)**2-R*TMP1)*(R2-R1)/DX
-2.*XM1/R1*(XM2-XM1)/DX;

XM2.=-XM2*XM2/R2*XK2+((XM2/R2)**2-R*TMP2)*(R2-R1)/DX
-2.*(XM2*XM2/R2)*(XM2-XM1)/DX;

E1.=-XM1*(E1/R1+R*TMP1)*XK1+(XM1*E1)/R1**2*(R2-R1)/DX
-(E1/R1+R*TMP1)*(XM2-XM1)/DX-XM1/R1*(E2-E1)/DX;

E2.=-XM2*(E2/R2+R*TMP2)*XK2+XM2*E2/R2**2*(R2-R1)/DX
-(E2/R2+R*TMP2)*(XM2-XM1)/DX-XM2/R2*(E2-E1)/DX;

TMP1.=0.;

TMP2.=0.;

XK1.=0.;

XK2.=0.;
```

where R and DX are constants and the known equilibrium values from a test run can be read in. Since TMP = $(\bar{e} - m^2/2\rho)/\rho c_v$, TMP1. and TMP2. can also be entered by differentiating this expression, but results will be similar. Appendix A contains the output of SERIES for this input.

In order to avoid using the same derivative with respect to x, a system based on one x point with constant input partial derivatives was also tried. This system uses the variables: RX for ρ ; XM for \overline{m} ; E for \overline{e} ; RDX for $\partial \rho / \partial x$; XMDX for $\partial \overline{m} / \partial x$; and EDX for $\partial \overline{e} / \partial x$; TMP for temperature, and XK for d(ln A)/dx.

```
RX.=-XM*XK-XMDX;
XM.=-XM*XM/RX*XK-(R*TMP-(XM/RX)**2)*RXDX
-2.*XM/RX*XMDX;
E.=-XM*(E/RX+R*TMP)*XK+XM*E/RX**2*RXDX
-(E/RX+R*TMP)*XMDX-XM/R*EDX;
RXDX.=0.;
XMDX.=0.;
EDX.=0.;
XMP.=0.;
XK.=0.;
```

Appendix B is the output of SERIES for this input.

Both systems were tested against the explicit Euler solution of the corresponding initial value problem (SERIES also generates a FORTRAN subroutine DIFFUN(T, Y, DY) which fills the array DY with the derivative evaluated at u(t) where t=T, u is in array Y). It was discovered that the radius of convergence of the power series contracted sharply for values past the throat of the nozzle, so only values between the inlet and the throat can be analyzed using STAN. Table I gives initial values that were picked for analysis. Note that the throat is at x=.26 where $d(\ln A)/dx = 0$.

Both of these systems were run with both sets of initial data, and the resulting contractivity regions are displayed in Figure 4. These were only achieved for Δt of $5*10^{-12}$, and do not correspond to the expectations of results from test runs. Also, they are identical for both the analytic and numerical solution, which suggests they are actually an artifact of the program STAN. This can be seen to be the case since the first step of generating the stability region about an equilibrium point U* is to

Table I - Values input to STAN. (Values in parenthesis used in two point scheme, --DX used only in one point scheme).

XK1 (XK2)	-8.77746	(-9.11899)	-3.53	(0.)
TMP1 (TMP2)	1309.	(1305.)	1098.	(1050.)
EDX	-316100. 1309.		-218570. 1098.	
XWX	28.2		10.413	
RDX	0364		43	
E1 (E2)	3555870364	(352426.)	231022.	(209565.)
XM1 (XM2)	16.47	(16.75)	56.8	(57.8)
R1 (R2)	.063	(.0626)	.04	(980°)
×۱	90.	.07	.25	.26

R = 1716.

DX = .01

DT = 5.E-6

Figure 4. Non-linear stability analysis of the nozzle problem. Solid line: m vs. e with center at (16.5, 355587.). Dashed line: ρ vs. m with center at (0., 16.5). Both axes of length 1.

3. Research Findings

Relative to the specific research outlined in the original proposal on this research, the following findings are of interest.

- 1. A study of recent literature on finite elements [18],[19] reveals that use of finite element techniques are not easily adaptable to nonlinear systems in several dimensions, especially when the system is designed to be easily changed as different reentry vehicle configurations are tested. The analysis of minimum and maximum step size found in [12] is really inadequate in the finite difference case, depending as it does on linearization of the differencial system, and a similar analysis in the finite element case seemed both beyond the scope of the intended research and not very fruitful.
- 2. Since the algebraic amplification matrices involved in the linear stability analysis of the methods under investigation did not point out the experimentally observed instability, it was inappropriate to develop a complicated algebraic manipulation package to compute such matrices.
- 3. After working with the two model packages HVSL and the converging-diverging nozzle, it was concluded that the form in which the updates to the dependent variable vector is derived (the "delta" form), resulting in parts of the numerical method being computed at various stages and places in the program, would make it difficult to submit these codes to use by standard packages, [20], [21] which usually require a single subroutine such as DIFFUN(T, Y, DY) to compute the first derivative array DY given the state variable array Y and the independent variable, T. On the other hand, the "delta form" can be easily adapted to most implicit multi-step correctors

$$U(x_{j}) = \sum_{i=1}^{k} \alpha_{i}U(x_{j-i}) + \Delta x \sum_{i=0}^{k} \beta_{i}\dot{U}(x_{j-i}),$$

search from U* along a particular line in (u_1, u_2) space emanating from U* searching for the initial conditions of the bisection method, i.e., find i such that $\Delta V(U^* + 2^{i}(e_1, e_2))$ has different sign from $\Delta V(U^* + 2^{i+1}(e_1, e_2))$, where (e_1, e_2) represents the unit vector in the search direction for the two variables being changed, u_1 and u_2 . The variable i varies from -3 to 4. In most applications of ordinary differential equation stability regions, the various state equations are not highly coupled, and when two equations are coupled, one usually attempts to find the stability region using these two variables. For discretized partial differential equations, however, the variables are necessarily highly coupled, and apparently a change on the order of 100 percent creates an immediate overflow. Thus, the actual stability region for $\Delta t = 5*10^{-12}$ occurs because $\Delta V = 0$ when Δt is made so small that $V(u_1(0), u_2(0)) = V(u_1(\Delta t), u_2(\Delta t))$ by either numerical or analytical techniques.

To test this hypothesis, one value, at x = .24, of ρ , of \overline{m} , and of \overline{e} were each changed to 10 times their original value and the original, linearized, converging-diverging nozzle program was run. In each of the three cases, overflow stopped the calculation by the third time step. Therefore, STAN must be modified to take into account the coupling of the state variables when analyzing the stability of systems of partial differential equations. This modification is currently being made. If successful, it would open the way to automatic stability analysis of complicated systems of nonlinear equations to allow researchers to choose which numerical method is most appropriate, from a stability standpoint, to integrate their parabolic-hyperbolic discretized system.

with only the additional storage for carrying the $U(x_{j-1})$, $U^1(x_{j-1})$ terms. Also, methods for changing step size Δx and even changing from one formula to another could be adapted from the packages. However, since the finite differences are usually only first order accurate the effort on nonlinear systems of a high order method in the independent variable versus a low order method in the spatial discretization is not yet understood. Certainly in the linear case there is a stability argument against it.

4. The best tool now available for the analysis of a nonlinear parabolic system could be STAN, provided an understanding of how to reduce a discretized system to one of a convenient size for such an analysis. Certainly the cost of both computer time and programmer time of entering the entire discretized system is prohibitive, yet the two attempts to enter significant subsystems did not yield sufficient information to show the value of this analysis technique.

However, experimental evidence exists that the numerical methods currently used to model high speed flow on a cone is, at best, marginally stable, and the results suspect. Continued research should be undertaken to provide an understandable method for directly analyzing the stability properties of parabolic-hyperbolic systems, and comparing them to the stability behavior of numerically generated solutions, and to chose, when appropriate, more accurate numerical methods that do not require significantly larger storage.

APPENDIX A

Output of SERIES for divided difference formulation

```
SUBROUTINE DIFFUN(T,Y,DY)
     DIMENSION DY(20), Y(20)
     DATA R/1716./, XK1/7.86711/, XK2/7.59839/, CV/4290./, DX/, 01/
      DY(1) = -(Y(4) - Y(3))/DX - Y(3) \times XK1
    DY(2) = -(Y(4) - Y(3))/DX - Y(4) = XK2
     DY(3) = -Y(3) + Y(3) + Y(1) + XK1 + ((Y(3)) + ((1)) + 2 - R = Y(7)) + (Y(2) - Y(1)) + DX - Y(3) + ((Y(3)) + (Y(3)) + ((Y(3)) + ((Y(3))
+2. \times Y(3)/Y(1) \times (Y(4)-Y(3))/DX
     0Y(4) = -Y(4) + Y(4) / Y(2) + XK2 + ((Y(4) / Y(2)) + +2 - R = Y(8)) + (Y(2) - Y(1)) / DX -
+2. = (Y(4)/Y(2))*(Y(4)=Y(3))/DX
     0Y(5) = \neg Y(3) \times (Y(5)/Y(1) + R + Y(7)) = XK1 + (Y(3) \times Y(5))/Y(1) = 2 \times (Y(2) - Y(1))
+)/OX-(Y(5)/Y(1)+R*Y(7))*(Y(4)-Y(3))/DX-Y(3)/Y(1)*(Y(6)-Y(5))/OX
      DY(6) = -Y(4) \times (Y(6)/Y(2) + R \times Y(8)) \times XK2 + Y(4) \times Y(6)/Y(2) \times 2 \times (Y(2) - Y(1))/Y(2) \times 2 \times (Y(2) - Y(1))/Y(2) \times 2 \times (Y(2) - Y(1))/Y(2) \times (Y(2) - Y(1))/Y(2) \times (Y(2) - Y(2) - Y(1))/Y(2) \times (Y(2) - Y(2) 
+DX-(Y(6)/Y(2)+R=Y(8))=(Y(4)-Y(3))/DX-Y(4)/Y(2)=(Y(6)-Y(5))/DX
     DY(7) = ((1-Y(3)*(Y(5)/Y(1)+R*Y(7))*XK1+(Y(3)*Y(5))/Y(1)**2*(Y(2)-Y(5))
+(1))/DX-(Y(5)/Y(1)+R*Y(7))*(Y(4)-Y(3))/DX-Y(3)/Y(1)*(Y(6)-Y(5))/DX
+)-Y(3)=(-Y(3)+Y(3)/Y(1)+XK1+((Y(3)/Y(1))=+2-R+Y(7))+(Y(2)-Y(1))/DX
+-2.~Y(3)/Y(1)*(Y(4)-Y(3))/OX)/Y(1))/Y(1))-(Y(5)-Y(3)~*2/Y(1))*(-(Y(
+4)-Y(3))/DX-Y(3)*XK11/Y(1)**2)/CV
     \partial Y(8) = ((-Y(4) * (Y(6)/Y(2) + R*Y(8)) * XK2 + Y(4) * Y(6)/Y(2) * * 2 * (Y(2) - Y(1) + Y(6)/Y(2) * 2 * (Y(2) - Y(1) + Y(6)/Y(2) * (Y(2) - Y(1) + Y(6)/Y(2) * (Y(2) - Y(1) + Y(2) + Y(3)/Y(2) * (Y(3) - Y(1) + Y(3)/Y(2) * (Y(3) - Y(1) + Y(3)/Y(2) * (Y(3) - Y(1) + Y(3)/Y(2) * (Y(3) - Y(3) - Y(3) * (Y(3) - Y
+))/DX=(Y(6)/Y(2)+R*Y(8))*(Y(4)-Y(3))/DX=Y(4)/Y(2)*(Y(6)-Y(5))/DX)-
+Y(4)*(¬Y(4)*Y(4)/Y(2)*XK2+((Y(4)/Y(2))**2¬R*Y(8))*(Y(2)¬Y(1))/OX=2
+.*(Y(4)/Y(2))*(Y(4)=Y(3))/DX)/Y(2))/Y(2)=(Y(6)=Y(4)**2/Y(2))*(=(Y(
+4)-Y(3))/DX-Y(4)*XK2)/Y(2)**2)/CV
     DY(9) = 1.
      RETURN
     END
```

```
SUBROUTINE SOL(T, YO, YNEW, IND)
      DIMENSION YO(20), YNEW(20), ZZZB(20), DTFAKE(20), DR1(20), R1(20), XM2
     +(20),XM1(20),TST(20),TSU(20),TSV(20),TSW(20),TSX(20),DR2(20),R2
     +(20), TS1(20), TS2(20), DXM1(20), TS3(20), TS4(20), TS5(20), TS6(20), TS7
     +(20),TS8(20),TMP1(20),TS9(20),TTS(20),TTT(20),TTU(20),TTV(20),TTW
     <u>+(20),TTX(20),TTY(20),TT0(20),TT1(20),TT2(20),DXM2(20),TT3(20),TT4</u>
     +(20),TT5(20),TT6(20),TT7(20),TT8(20),TMP2(20),TT9(20),TUS(20),TUU
     +(20), TUV(20), TUW(20), TUY(20), TUO(20), TUI(20), TU2(20), DE1(20), E1
     +(20), TU3(20), TU5(20), TU6(20), TU7(20), TU8(20), TU9(20), TVS(20), TVT
     +(20),TVV(20),TVW(20),TVX(20),TV2(20),TV3(20),TV4(20),E2(20),TV6
     +(20), TV7(20), TV8(20), TV9(20), DE2(20), TWS(20), TWU(20), TWV(20), TWW
     +(20), TWX(20), TWY(20), TWZ(20), TWO(20), TW2(20), TW3(20), TW4(20), TW9
     +(20), TXS(20), TXT(20), TXW(20), TXX(20), TXY(20), TZ6(20), TZ7(20), TZ8
     +(20),TZ9(20),TOS(20),TOT(20),TOU(20),TOO(20),TO2(20),TO3(20),TO4
     +(20),T3U(20),T3V(20),T3W(20),T3X(20),T3Y(20),T3Z(20),T3Q(20),T36
     +(20), T38(20), T39(20), T4S(20), DTMP1(20), DTMP2(20), TFAKE(20)
      DATA R/1716./, XK1/7.86711/, XK2/7.59839/, CV/4290./, DX/.01/
      EPS=1.0E=6
      R1(1) = YU(1)
      R2(1)=Y0(2)
      XM1(1) = YO(3)
      XM2(1) = YO(4)
      E1(1) = Y0(5)
      E2(1)=Y0(6)
      TMP1(1) = YO(7)
      TMP2(1) = YO(8)
      TFAKE(1)=YO(9)
      IND=0
      DO 1 III=1,19
      NIII=III
      1111=111 - 1
      TST(III) = XM2(III) - XM1(III)
      TSU(III)=TST(III)/DX
      TSV(111)=-TSU(111)
      TSW(III)=XMl(III)*XKl
      TSX(III)=TSV(III)-TSW(III)
      DRI(III)=TSX(III)
      R1(III + 1)=DR1(III)/FLOAT(III)
      TS1(III) = XM2(III) * XK2
      TS2(111) = TSV(111) - TS1(111)
      DR2(III) = TS2(III)
      R2(III + 1) = DR2(III)/FLOAT(III)
      TS3(111)=0.
      DO 100 JJJ=1, III
      TS3(III) = TS3(III) + XML(JJJ) * XML(III = JJJ+1)
100
      IF (III.EQ.1) GC TO 101
      TS4(III)=TS3(III) -TS4(1)*R1(III)
      IF(III.EQ.2)GO TO 102
      DO 103 JJJ=2,1111
103
      TS4(III)=TS4(III)=TS4(JJJ)*R1(III=JJJ+1)
102
      TS4(III) = TS4(III) / R1(I)
      GO TO 104
101
      TS4([[])=TS3([]])/R1([]])
104
      CONTINUE
      TS5(111)=TS4(111) *XK1
      TS6(III) =-TS5(III)
      IF (III.EQ.1) GG TO 105
      TS7(III)=XM1(III)=TS7(1)*R1(III)
```

```
IF(111.EQ.2)GD TO 106
      DO 107 JJJ=2,1111
      TS7(111)=TS7(111)=TS7(JJJ)*R1(III=JJJ+1)
107
      TS7(111)=TS7(111)/R1(1)
106
      GO TO 108
      TS7(III)=XM1(III)/R1(III)
105
108
      CONTINUE
      TS8(III)=0.
      DO 109 JJJ=1,III
      TS8(111)=TS8(111)+TS7(JJJ)*TS7(111=JJJ+1)
109
      TS9(III) = TMP1(III) * R
      TTS(111)=TS8(111)=TS9(111)
      TTT(111)=R2(111)-R1(111)
      TTU([]])=0.
      DO 110 JJJ=1,III
110
      TTU(111)=TTU(111)+TTS(JJJ)*TTT(111-JJJ+1)
      TTV(III)=TTU(III)/DX
      TTW(III)=TS6(III)+TTV(III)
      TTX(III) = XMI(III) *2.
      IF (III.EQ.1) GO TO 111
      TTY(III)=TTX(III) -TTY(1)*R1(III)
      IF(III.EQ.2)GO TO 112
      DO 113 JJJ=2, III1
      TTY(II()=TTY(III)=TTY(JJJ)*R1(III=JJJ+1)
      TTY(III) = TTY(III)/RI(I)
      GO TO 114
      TTY(III) = TTX(III) /R1(III)
111
      CONTINUE
114
      TTO(III)=0.
      DO 115 JJJ=1, III
      TTO(111)=TTO(111)+TTY(JJJ)*TST(111-JJJ+1)
115
      TT1(III)=TTO(III)/DX
      TT2(III)=TTW(III)-TT1(III)
      DXM1(111)=TT2(111)
      XM1(III + 1)=DXM1(III)/FLOAT(III)
      TT3(III)=0.
      DO 116 JJJ=1,111
      TT3(III) = TT3(III) + XM2(JJJ) + XM2(III - JJJ + 1)
116
      IF (III.EQ.1) GO TO 117
      TT4(111)=TT3(111)-TT4(1)*R2(111)
      IF(III.EQ.2)GO TO 118
      DO 119 JJJ=2, III1
119
      TT4(III)=TT4(III) -TT4(JJJ) -R2(III-JJJ+1)
      TT4(III) = TT4(III) / R2(1)
118
      GG TC 120
      TT4(111)=TT3(111)/R2(111)
117
120
      CCNTINUE
      TT5(III)=TT4(III)*XK2
      TT6(III)=-TT5(III)
      IF (III.EQ.1) GG TO 121
      TT7(111)=XM2(111)-TT7(1)~R2(111)
      IF(III.EQ.2)GU TO 122
      DO 123 JJJ=2, IIII
      TT7(III) = TT7(III) = TT7(JJJ) * R2(III = JJJ+1)
123
      TT7(111)=TT7(111)/R2(1)
122
      GC TO 124
      TT7(III)=XM2(III)/R2(III)
121
124
     CUNTINUE
```

```
TT8([]])=0.
      DO 125 JJJ=1, III
      TT8(111)=TT8(111)+TT7(JJJ)*TT7(111=JJJ+1)
      TT9(111)=TMP2(111)*R
      TUS(III)=TT8(III)-TT9(III)
      TUU(III)=0.
      DO 126 JJJ=1, 111
      TUU(III)=TUU(III)+TUS(JJJ)*TTT(III=JJJ+1)
126
      TUV(III)=TUU(III)/DX
      TUW(111)=TT6(111)+TUV(111)
      TUY([[])=TT7([[])*2.
      TUO(111)=0.
      00 127 JJJ=1.III
127
      TUO(III)=TUO(III)+TUY(JJJ)*TST(III-JJJ+1)
      TU1(III)=TU0(III)/DX
      TU2(111)=TUW(111)-TU1(111)
      DXM2(III)=TU2(III)
      XM2(III + 1)=DXM2(III)/FLQAT(III)
      IF (III.EQ.1) GO TO 128
      TU3(III)=E1(III)=TU3(1)*R1(III)
      IF(111.EQ.2)GD TO 129
      00 130 JJJ=2, IIII
130
      TU3(III) = TU3(III) = TU3(JJJ) *R1(III=JJJ+1)
      TU3(III) = TU3(III)/R1(1)
129
      GC TU 131
      TU3(III) = E1(III)/R1(III)
128
      CONTINUE
131
      TU5(111)=TU3(111)+TS9(111)
      TU6(III)=0.
      00 132 JJJ=1, III
132
      TU6(111)=TU6(111)+XM1(JJJ)*TU5(111-JJJ+1)
      TU7(III)=TU6(III) *XK1
      TU8(III) = -TU7(III)
      TU9([[])=0.
      DO 133 JJJ=1, III
      TU9(III)=TU9(III)+XM1(JJJ)*E1(III-JJJ+1)
133
      TVS(III)=0.
      DC 134 JJJ=1, III
      TVS(III)=TVS(III)+R1(JJJ)*R1(III-JJJ+1)
134
      IF (1111.EQ.1) GC TO 135
      TVT([[])=TU9([[])-TVT(1)*TVS([[])
      IF(III.EQ.2)GO TO 136
      DC 137 JJJ=2, [[1]
      TVT(III)=TVT(III)-TVT(JJJ)*TVS(III-JJJ+1)
137
      TVT([[[]=TVT([[[])/TVS(1)
136
      GO TO 138
      TVT(111)=TU9(111)/TVS(111)
135
      CONTINUE
138
      TVV(III)=0.
      DO 139 JJJ=1, III
      TVV(III)=TV<u>V(</u>III)+TVT(JJJ)*TTT(III-JJJ+1)
139
      XOV(111)VVT=(111)WVT
      TVX(III) = TU8(III) + TVw(III)
      TV2([[])=0.
      DO 140 JJJ=1, [[[
140
      TV2(|||) = TV2(|||) + TU5(|||) * TST(|||-|||)+1)
      TV3(III)=TV2(III)/DX
      TV4([]])=TVX([][])=TV3([[])
```

```
TV6(III) = E2(III) - E1(III)
      TV7(III)=0.
      00 141 JJJ=1,III
141
      TV7(III)=TV7(III)+TS7(JJJ)*TV6(III=JJJ+1)
      TV8(III)=TV7(III)/DX
      TV9(III) = TV4(III) - TV8(III)
      DE1(III) = TV9(III)
      E1(III + 1) = DE1(III) / FLOAT(III)
      IF (III.EQ.1) GC TO 142
      TWS(III)=E2(III)-TWS(1)*R2(III)
      IF(III.EQ.2)GO TO 143
      00 144 JJJ=2, III1
      TWS(III)=TWS(III) =TWS(JJJ) = R2(III-JJJ+1)
144
      TwS(III) = TWS(III)/R2(1)
143
      GO TO 145
1+2
      TwS(III) = E2(III)/R2(III)
145
      CONTINUE
      TwU(111)=TwS(111)+TT9(111)
      TwV(III)=0.
      DO 146 JJJ=1,III
      TWV(III) = TWV(III) \times (III) \times WT = (III) \vee WT
146
      TWW(III)=TWV(III) *XK2
      TWX(III) = - TWW(III)
      TWY(III)=0.
      DC 147 JJJ=1, III
      TWY(III) = TWY(III) + xM2(JJJ) + E2(III - JJJ + 1)
147
      TWZ(III)=0.
      DO 148 JJJ=1, III
      TWZ(III)=TWZ(III)+R2(JJJ)#R2(III-JJJ+1)
148
      IF (III.EQ.1) GO TO 149
      TWO(III)=TWY(III)-TWO(1)*TWZ(III)
      IF(III.EQ.2)GU TO 150
      DO 151 JJJ=2, III1
151
      TwO(111)=TWO(111)-TWO(JJJ)*TWZ(111-JJJ+1)
      TWO(III) = TWO(III) / TWZ(1)
150
      GU TO 152
1+9
      TWO([[])=TWY([]])/TWZ([]])
152
      CONTINUE
      TW2(III)=0.
      DU 153 JJJ=1,III
      TW2(III) = TW2(III) + TW0(JJJ) \times TTT(III - JJJ + 1)
153
      TW3(III)=TW2(III)/DX
      TW4(III)=TWX(III)+TW3(III)
      Tw9(III)=0.
      DO 154 JJJ=1, III
      TW9(III)=TW9(III)+TWU(JJJ)*TST(III=JJJ+1)
154
      XG/(111)=TW9(111)/DX
      TXT(III) = TW4(III) - TXS(III)
      TXW(III)=0.
      DG 155 JJJ=1, III
      TXW(III) = TXW(III) + TTT(JJJ) * TV6(III = JJJ + I)
155
      TXX(III)=TXw(III)/DX
      (III) \times XT = (III) T XT = (III) Y XT
      DE2(111)=TXY(111)
E2(111 + 1)=DE2(111)/FLOAT(111)
      TZ6(III)=0.
      UU 156 JJJ=1,III
      TZ6(111)=TZ6(111)+XM1(JJJ)*TT2(111=JJJ+1)
```

```
IF (III.EQ.1) GC TO 157
      TZ7(III) = TZ6(III) = TZ7(1) * R1(III)
      IF(III.EQ.2)GO TO 158
      DO 159 JJJ=2, [ [ [ 1
      TZ7(III) = TZ7(III) - TZ7(JJJ) \times R1(III-JJJ+1)
159
      TZ7(III) = TZ7(III) / R1(1)
158
      GC TO 160
      TZ7(III) = TZ6(III) / R1(III)
157
      CONTINUE
160
      TZ8(III) = TV9(III) - TZ7(III)
      IF (III.EQ.1) GO TO 161
      TZ9(III)=TZ8(III)=TZ9(1)#R1(III)
      IF(111.EQ.2)GO TO 162
      DD 163 JJJ=2, IIII
      TZ9(III)=TZ9(III) -TZ9(JJJ)*R1(III-JJJ+1)
163
162
      TZ9(III) = TZ9(III)/RI(1)
      GC TC 164
      TZ9(III)=TZ8(III)/R1(III)
101
164
      CONTINUE
      TOS(III)=0.
      DS 165 JJJ=1, III
      TOS(111)=TOS(111)+XM1(JJJ)~XM1(111-JJJ+1)
      IF (III.EQ.1) GC TO 166
      TOT(III) = TOS(III) - TOT(1) *R1(III)
      IF(III.EQ.21GO TO 167
      DC 168 JJJ=2, IIII
      TOT(III) = TOT(III) -- TOT(JJJ) *R1(III -- JJJ+1)
168
167
      TOT(III) = TOT(III) / R1(1)
      GC TO 169
      TOT(III) = TOS(III) /R1(III)
166
169
      CONTINUE
      TOU(III) = E1(III) - TOT(III)
      -0 = (111)00T
      DO 170 JJJ=1, III
170
      T00(111)=T00(111)+T0U(JJJ)*TSX(III=JJJ+1)
      IF (III.EQ.1) GG TO 171
      T02(III)=T00(III)-T02(1)*TVS(III)
      IF(III.EQ.2)GO TO 172
      DU 173 JJJ=2, III1
      T02(III)=T02(III)-T02(JJJ)*TVS(III-JJJ+L)
173
      T02(III) = T02(III) /TVS(1)
172
      GO TC 174
      T02(111)=T00(111)/TVS(111)
171
174
      CONTINUE
      T03(III)=TZ9(III)=T02(III)
      T04(111)=T03(111)/CV
      DTMPI(III)=TO4(III)
      TMP1(III + 1)=DTMP1(III)/FLOAT(III)
      T3U(111)=0.
      DO 175 JJJ=1,III
      T3U([[[]]=T3U([[]])+XM2(JJJ)*TU2([[]=JJJ+1)
175
      IF (111.5Q.1) GG TO 176
      T3V(III) = T3U(III) = T3V(I) * R2(III)
      IF(III.69.2)GO TO 177
      00 173 JJJ=2,1111
173
      T3V(III)=T3V(III)=T3V(JJJ)*R2(III=JJJ+1)
177
      T3V(111) = T3V(111)/R2(1)
      GC TU 179
```

```
175
      T3V(III) = T3U(III)/R2(III)
179
      CCNTINUE
      T3W(III) = TXY(III) - T3V(III)
      IF (III.EC.1) GO TO 180
      T3X(III) = T3W(III) - T3X(I) * R2(III)
      IF(111.EQ.2)GO TO 181
      OC 182 JJJ=2, IIII
      T3X(III) = T3X(III) \rightarrow T3X(JJJ) \times R2(III \rightarrow JJJ+1)
132
      T3X(III)=T3X(III)/R2(1)
131
      GO TO 183
      T3X(III) = T3W(III)/R2(III)
180
      CONTINUE
183
      T3Y(III)=0.
      DO 184 JJJ=1,III
      T3Y(III)=T3Y(III)+XM2(JJJ)*XM2(III=JJJ+1)
184
      IF (111.EQ.1) GC TO 185
      T3Z(III) = T3Y(III) = T3Z(1) * R2(III)
      IF(III.EQ.2)GO TO 186
      DG 187 JJJ=2, IIII
137
      T3Z(III) = T3Z(III) = T3Z(JJJ) \times R2(III = JJJ+1)
      T3Z(III) = T3Z(III)/R2(1)
136
      GO TO 188
      T32(I11) = T3Y(I11)/R2(I11)
185
188
      CONTINUE
      T30(111) = E2(111) - T3Z(111)
      T36(III)=0.
      DC 189 JJJ=1, III
      T36(111)=T36(111)+T30(JJJ)*TS2(111-JJJ+1)
139
      IF (III.EQ.1) GC TO 190
      T38(III) = T36(III) = T38(1) * TWZ(III)
      IF(III.EQ.2)GD TO 191
      DO 192 JJJ=2, IIII
192
      T38(III) = T38(III) - T38(JJJ) \times TWZ(III - JJJ+1)
      T38(111)=T38(111)/TWZ(1)
191
      GG TG 193
190
      T38(III) = T36(III) / TWZ(III)
193
      CONTINUE
      T39(III) = T3X(III) - T38(III)
      T4S(111)=T39(111)/CV
      DT.4P2(111)=T4S(111)
      TMP2(III + 1)=DTMP2(III)/FLOAT(III)
      IF (III.GT.1)OTFAKE(III)=0.
      DTFAKE(1)=1.
      TFAKE([II + 1)=DTFAKE(III)/FLOAT(III)
      IF (III.LT.4)GO TO 1
      IIII=III + 1
      ZZZZ1=0.
      22222=0.
      DU 194 JJJ=1. [ [ ] 1
      ZZZZ1=ZZZZZ1 + P1(JJJ)
      IF(JJJ.LT.[II=4]GG TO 194
      ZZZZZ=ZZZZZ + ABS(R1(JJJ))
194
      CONTINUE
      72221=EPS*(ABS(22221) + 1.)
      22221=0.
      22222=0.
      00 195 JJJ=1, IIII
```

```
ZZZZ1=ZZZZ1 +RZ(JJJ)
     IF(JJJ.LT.III-4)GU TO 195
     ZZZZ2=ZZZZ2 + ABS(R2(JJJ))
195
     CONTINUE
     ZZZZ1=EPS*(ABS(ZZZZI) + 1.)
     ZZZZ1=0.
     22222=0.
     DO 196 JJJ=1, IIII
     ZZZZ1=ZZZZ1 +XM1(JJJ)
     IF(JJJ.LT.III-4)G0 T0 196
     ZZZZZ=ZZZZZ + ABS(XM1(JJJ))
196
     CONTINUE
     ZZZZ1=EPS*(ABS(ZZZZZ1) + 1.)
     2221=0.
     ZZZZZ=O.
     00 197 JJJ=1, IIII
     ZZZZ1=ZZZZ1 +XM2(JJJ)
     IF(JJJ.LT.III=4)GO TO 197
     CONTINUE
     ZZZZ1=EPS*(ABS(ZZZZ1) + 1.)
     ZZZZ1=0.
     ZZZZ2=0.
     DO 198 JJJ=1, IIII
     ZZZZ1=ZZZZ1 +E1(JJJ)
     IF(JJJ.LT.III-4)GO TO 198
     ZZZZZ=ZZZZZZ + ABS(E1(JJJ))
193
     CCNTINUE
     ZZZZ1=EPS*(ABS(ZZZZ1) + 1.)
     22221=0.
     22222=0.
     DO 199 JJJ=1,IIII
     ZZZZ1=ZZZZZ +E2(JJJ)
     IF(JJJ.LT.III-4)G0 T0 199
     ZZZZZ=ZZZZZ + ABS(E2(JJJ))
199
     CONTINUE
     ZZZZ1=EPS*(48S(ZZZZ1) + 1.)
     ZZZZ1=0.
     22222=0.
     DU 200 JJJ=1,III1
     ZZZZ1=ZZZZ1 +TMP1(JJJ)
     IF(JJJ.LT.III=4)G0 T0 200
     ZZZZ2=ZZZZ2 + ABS(TMP1(JJJ))
     CONTINUE
     ZZZZ1=EPS=(ABS(ZZZZZ1) + 1.)
     IF(ZZZZZ-GT-ZZZZZI)GO TO 1
     22221=0.
     7.7.7.7.2=0.
     υΩ 201 JJJ=1,IIII
     LZLZ1=ZLZZ1 + TMP2(JJJ)
     IF(JJJ.LT.III-4)GC TO 201
     LILIZ=11.122 + ABS(TMP2(JJJ))
201
     CONTINUE
```

```
ZZZZ1=EPS*(ABS(ZZZZZ1) + 1.)
      IF(ZZZZZ.GT.ZZZZZI)GO TO 1
      ZZZZ1=0.
      22222=0.
      DO 202 JJJ=1, IIII
      27771=77771 +TFAKE(JJJ)
      IF(JJJ.LT.[]]-4)G0 TO 202
      ZZZZ2=ZZZZZ + ABS(TF4KE(JJJ))
    CONTINUE
202
      ZZZZ1=EPS*(ABS(ZZZZZ1) + 1.)
      IF(ZZZZZ.GT.ZZZZZI)GO TO 1
      GC TO 2
    1 CONTINUE
    2 CONTINUE
      DG 203 JJJ=1,NIII
      IF(ABS(R1(JJJ)).LT.EPS) GO TO 203
      KKK=JJJ
      GC TO 204
203
      CONTINUE
204
      ZZZZ1=0.
      KKK1=KKK+1
      DD 205 JJJ=KKK1, NIII
205
      ZZZZ1=ZZZZ1+ABS(R1(JJJ))
      IF(ZZZZI/ABS(RI(KKK)).GE.1)IND=IND + 1
      DC 206 JJJ=1,NIII
      IF(ABS(R1(JJJ)).LT.EPS) GO TO 200
      KKK=JJJ
      GC TO 207
206
      CONTINUE
207
      22221=0.
      KKK1=KKK + 1
      DO 208 JJJ=KKK1,NIII
203
      ZZZZ1=ZZZZ1+ABS(R1(JJJ))
      IF(ZZZZI/ABS(PI(KKK)).GE.I)IND=IND + I
      DO 209 JJJ=1,NIII
      IF(ABS(R1(JJJ)).LT.EPS) GO TO 209
      KKK=JJJ
      GG TO 210
209
      CONTINUE
210
      22221=0.
      KKK1=KKK+1
      DO 211 JJJ=KKK1,NIII
211
      ZZZZ1=ZZZZ1+ABS(R1(JJJ))
      IF(ZZZZ1/ABS(R1(KKK)).GE.1)IND=IND + 1
      OC 212 JJJ=1,NIII
      IF (ABS(R2(JJJ)).LT.EPS) GO TO 212
      KKK=JJJ
      GC TO 213
212
      CONTINUE
213
      22221=0.
      KKK1=KKK + 1
      UC 214 JJJ=KKKI,NIII
      ZZZZ1=ZZZZ1+ABS(R2(JJJ))
214
      IF(ZZZZI/ABS(R2(KKK)).GE.1)IND=IND + 1
      DC 215 JJJ=1,NIII
      IF (ABS(32(JJJ)).LT.EPS) GD TO 215
      KKK = JJJ
      GC TG 216
```

```
CONTINUE
215
      22221=0.
216
      KKK1 = KKK + 1
      DO 217 JJJ=KKK1,NIII
217
      ZZZZI=ZZZZI+ABS(R2(JJJ))
      IF(ZZZZ1/ABS(R2(KKK)).GE.1)IND=IND + 1
      DU 218 JJJ=1.NIII
      IF(ABS(R1(JJJ)).LT.EPS) GO TO 218
      KKK=JJJ
      GC TC 219
      CONTINUE
213
219
      22221=0.
      KKK1=KKK+1
      DG 220 JJJ=KKK1,NIII
220
      ZZZZ1=ZZZZ1+ABS(R1(JJJ))
      IF(ZZZZ1/4BS(R1(KKK)).GE.1)IND=IND + 1
      DG 221 JJJ=1,NIII
      IF(ABS(TVS(JJJ)).LT.EPS) GO TO 221
      KKK=JJJ
      GC TC 222
      CONTINUE
221
222
      ZZZZ1=0.
      KKK1=KKK + 1
      DO 223 JJJ=KKK1,NIII
      ZZZZ1=ZZZZ1+ABS(TVS(JJJ))
223
      IF(ZZZZ1/ABS(TVS(KKK)).GE.1)IND=IND + 1
      DC 224 JJJ=1,NIII
      IF(ABS(R2(JJJ)).LT.EPS) GO TO 224
      KKK=JJJ
      GC TC 225
224
      CONTINUE
225
      ZZZZ1=0.
      KKK1=KKK+1
      DO 226 JJJ=KKK1, NIII
      ZZZZ1=ZZZZ1+ABS(P2(JJJ))
226
      IF(ZZZZ1/ABS(R2(KKK)).GE.1)IND=IND + 1
      DC 227 JJJ=1,NIII
      IF(ABS(TWZ(JJJ)).LT.EPS) GO TO 227
      KKK=JJJ
      GC TO 228
227
      CONTINUE
228
      22221=0.
      KKK1=KKK + 1
      DO 229 JJJ=KKK1.NIII
      ZZZZ1=ZZZZ1+ABS(TWZ(JJJ))
229
      IF(ZZZZ1/ABS(TWZ(KKK)).GE.1)IND=IND + 1
      DO 230 JJJ=1,NIII
      IF(ABS(R1(JJJ)).LT.EPS) GO TO 230
      KKK=JJJ
      GO TO 231
      CONTINUE
230
231
      22221=0.
      KKK1=KKK+1
      On 232 JJJ=KKK1,NIII
232
      LLLL1=LLZZZ1+AHS(R1(JJJ))
      IF(72221/43S(R1(KKK)).GE.1)IND=IND + 1
      ac 233 JJJ=1, NIII
      IF(A3$(31(JJJ)).LT.EPS) GO TO 233
```

```
KKK=JJJ
      GC TO 234
233
      CONTINUE
234
      ZZZZl=0.
      KKK1=KKK+1
      DO 235 JJJ=KKK1,NIII
235
      ZZZZ1=ZZZZ1+4BS(R1(JJJ))
      IF(ZZZZI/ABS(R1(KKK)).GE.1)IND=IND + 1
      DC 236 JJJ=1,NIII
      IF (ABS(R1(JJJ)).LT.EPS) GO TO 236
      KKK=JJJ
      GO TO 237
23o
      CCNTINUE
237
      22221=0.
      KKK1=KKK + 1
      DU 233 JJJ=KKK1,NIII
238
      ZZZZ1=ZZZZ1+ABS(RI(JJJ))
      IF(ZZZZ1/ABS(R1(KKK)).GE.1)IND=IND + 1
      DC 239 JJJ=1, NIII
      IF(ABS(TVS(JJJ)). LT.EPS) GO TO 239
      KKK=JJJ
      GC TO 240
239
      CONTINUE
240
      22221=0.
      KKK1=KKK + 1
      DO 241 JJJ=KKK1,NIII
      ZZZZ1=ZZZZ1+ABS(TVS(JJJ))
241
      IF(ZZZZI/ABS(TVS(KKK)).GE.1)[ND=IND + 1
      DG 242 JJJ=1,NIII
      IF(ABS(R2(JJJ)).LT.EPS) GO TO 242
      KKK=JJJ
      GC TC 243
      CONTINUE
242
      22221=0.
243
      KKK1=KKK+1
      DO 244 JJJ=KKK1,NIII
244
      ZZZZ1=ZZZZ1+AdS(RZ(JJJ))
      IF(ZZZZI/ABS(R2(KKK)).GE.1)IND=IND + 1
      DC 245 JJJ=1,NIII
      IF (ABS (R2(JJJ)).LT.EPS) GO TO 245
      KKK=JJJ
      GU TO 246
      CCNTINUE
245
      22221=0.
246
      KKK1=KKK+1
      UC 247 JJJ=KKK1,NIII
247
      ZZZZ1=ZZZZ1+ABS(R2(JJJ))
      IF(ZZZZ1/ABS(R2(KKK)).GE.1)IND=IND + 1
      DO 248 JJJ=1,N111
      IF(ABS(R2(JJJ)).LT.EPS) GO TO 248
      KKK=JJJ
      GC TO 249
      CONTINUE
248
      22221=0.
249
      KKK1=KKK + 1
      DO 250 JJJ=KKKI,NIII
250
      IF (ZZZZ1/ABS(RZ(KKK)).GE.1)IND=IND + 1
```

```
DO 251 JJJ=1,NIII
      IF(ABS(TWZ(JJJ)).LT.EPS) GO TO 251
      GO TO 252
251
      CONTINUE
252
      ZZZZ1=0.
      KKK1=KKK + 1
      DG 253 JJJ=KKK1,NIII
      ZZZZ1=ZZZZ1+ABS(TWZ(JJJ))
253
      IF(ZZZZ1/ABS(TWZ(KKK)).GE.1)IND=IND + 1
      NIII=NIII + 1
      ZZZ3(1) = R1(NIII)
      DO 254JJJ=2,NIII
254
      ZZZB(JJJ)=R1(NIII-JJJ+1) + T*ZZZB(JJJ-1)
      YNEW(1)=ZZZB(NIII)
      ZZZB(1)=R2(NIII)
      DG 255JJJ=2,NIII
255
      ZZZB(JJJ) = R2(NIII - JJJ+1) + T \times ZZZB(JJJ-1)
      YNEW(2)=ZZZB(NIII)
      ZZZB(1) = XM1(NIII)
      DC 256JJJ=2,NIII
256
      ZZZB(JJJ)=XM1(NIII-JJJ+1) + T#ZZZB(JJJ-1)
      YNEW(3)=ZZZB(NIII)
      ZZZB(1) = XM2(NIII)
      DG 257JJJ=2,NIII
257
      ZZZB(JJJ)=XM2(NIII+JJJ+1) + T*ZZZB(JJJ+1)
      YNEW(4)=ZZZB(NIII)
      ZZZB(1)=E1(NIII)
      DO 258JJJ=2,NIII
258
      ZZZB(JJJ)=E1(NIII-JJJ+1) + T*ZZZB(JJJ-1)
      YNEh(5)=ZZZB(NIII)
      ZZZB(1)=E2(NIII)
      DC 259JJJ=2,NIII
      ZZZB(JJJ)=E2(NIII-JJJ+1) + T*ZZZB(JJJ-1)
259
      YNEW(6)=ZZZB(NIII)
      ZZZ3(1) = TMP1(NIII)
      DC 260JJJ=2,NIII
      ZZZB(JJJ) = TMP1(NIII = JJJ+1) + T*ZZZB(JJJ=1)
260
      YNEW(7) = ZZZB(NIII)
      ZZZB(1)=TMP2(NIII)
      DO 261JJJ=2.NIII
      ZZZB(JJJ) = TMP2(NIII = JJJ+1) + T*ZZZB(JJJ=1)
261
      YNEW(8)=ZZZB(NIII)
      ZZZB(1)=TFAKE(NIII)
      DG 202JJJ=2,NIII
      ZZZS(JJJ)=TFAKE(NIII+JJJ+1) + T*ZZZB(JJJ-1)
262
      YNEW(9)=ZZZB(NIII)
      RETURN
      END
```

APPENDIX B

Output of SERIES for constant spacial derivative formulation

SUBFCUTINE EIFFUN(T,Y,DY)
DIMENSION DY(20), Y(20)
DATA R/1716./.DX/.01/
DY(1)=0.
DY(2) = -Y(5) + Y(12) - (Y(5) - Y(4)) / UX
$DY(3) = -Y(6) \cdot Y(13) - (Y(6) - Y(5))/DX$
UY(4)=0.
0Y(5)=-Y(5)*Y(5)/Y(2)*Y(12)-(R*Y(10)-(Y(5)/Y(2))**2)*(Y(2)-Y(1))/
+DX=2, *Y(5)/Y(2)+(Y(5)=Y(4))/DX
$DY(6) = -Y(6) \times Y(6) / Y(3) \times Y(13) - (R \times Y(11) - (Y(6) / Y(3)) + 2) \times (Y(3) - Y(2)) / (R \times Y(6) - Y(6) - Y(6)) + (Y(6) - Y(6) - Y(6$
+DX=2.*Y(6)/Y(3)*(Y(6)=Y(5))/DX
CY(7)=0.
0Y(8) = -Y(5) + (Y(8)/Y(2) + R + Y(10)) + Y(12) + Y(5) + Y(8)/Y(2) + 2 + (Y(2) - Y(1)) + (Y(3) + Y(3) + Y
+))/DX=(Y(8)/Y(2)+R*Y(10))*(Y(5)=Y(4))/DX=Y(5)/Y(2)*(Y(8)=Y(7))/DX
DY(9) = -Y(6) * (Y(9)/Y(3) + R * Y(11)) * Y(13) + Y(6) * Y(9)/Y(3) * * 2 * (Y(3) - Y(2)) * Y(3) *
+)]/DX=(Y(9)/Y(3)+R*Y(11))*(Y(6)=Y(5))/DX=Y(6)/Y(3)*(Y(9)=Y(8))/CX
DY(1C)=0.
DY(11)=0.
CY(12)=0.
DY(13)=0.
RETURN
END

```
SUBROUTINE SCL(T.YC.YNEW.INC)
      DIMENSION YC(20), YNEW(20), ZZZB(20), DRO(20), RO(20), DRI(20), RI(20),
     <u>+xm1(20),xk1(20),T$T(20),T$U(20),XM0(20),T$V(20),T$W(20),T$X(20),D</u>
     +R2(20),R2(20),XM2(20),XM2(20),TSY(20),TSZ(20),TSO(20),TS1(20),TS2
     +(20),DXMO(20),CXM1(20),TS3(20),TS4(20),TS5(20),TS6(20),TMP1(20),T
     +S7(20),TS6(20),TS9(20),TTS(20),TTT(20),TTU(20),TTV(20),TTW(20),TT
     +x(20),TTY(20),TTO(20),TT1(20),TT2(20),DXM2(20),TT3(20),TT4(20),TT
     +5(20),TT6(20),TMP2(20),TT7(20),TT8(20),TT9(20),TUS(20),TUT(20),TU
     +U(20),TUV(20),TUW(20),TUX(20),TUY(20),TUO(20),TU1(20),TU2(20),DEO
     +(20),E0(20),DE1(20),E1(20),TU3(20),TU5(20),TU6(20),TU7(20),TU8
     +(20), TU9(20), TV5(20), TVT(20), TVV(20), TVW(20), TVX(20), TV2(20), TV3
     +(20), TV4(20), TV6(20), TV7(2C), TV8(20), TV9(20), DE2(20), E2(20), TWS
     +(20), TWU(20), ThV(20), ThW(20), TWX(20), ThY(20), TWZ(20), TWO(20), Th2
     +(20),Tw3(20),Th4(20),Th9(20),TXS(20),TXT(20),TXV(20),TXW(20),TXX
     +(20), TXY(20), DXK1(20), DXK2(20), DTMP1(20), DTMP2(20)
      JATA R/1716./,CX/.01/
      EPS=1.0E=6
      RO(1) = YC(1)
      R1(1)=YC(2)
      R2(1)=YC(3)
      XMO(1)=YO(4)
      XM1(1)=Y0(5)
      XM2(1)=YO(6)
      EO(1) = YO(7)
      E1(1) = YO(8)
      E2(1)=Y0(5)
      T \neq P1(1) = YC(10)
      TMP2(1) = YC(11)
      XK1(1) = YO(12)
      XK2(1) = YC(13)
      INC=0
      DC 1 III=1,19
      NIII=III
      1111=111 - 1
      IF (III.GT.1)DRO(III)=0.
      DRC(1)=0.
      RO(111 + 1) = ORO([[[]]/FLOAT([[]])
      TST(1(1)=0.
      DE 100 JJJ=1,111
100
      TST(111)=TST(111)+XML(JJJ)*XK1(111-JJJ+1)
      TSU([[[] ==TST([[])
      TSV(III)=XMI(III)=XMO(III)
      TSW([[]]) > TSV([[]]) / DX
      TSX(111)=TSU(111)=TSW(111)
      DRI(III)=TSX(III)
      RI(III + 1) = URI(III) / FLCAT(III)
      TSY(111)=0.
      DC 101 JJJ=1, [1]
101
      TSY(111)=TSY(111)+XM2(JJJ)*XK2(111=JJJ+1)
      TSZ(IIII) = TSY(III)
      TSO(111) = XM2(111) - XM1(111)
      TS1(111)=TS0(111)/CX
      T$2([[[]=T$2([[])=T$1([[])
      DR 2(111) = TS2(111)
      R2(111 + 1)=DF2([11])/FLCAT([11])
      IF ([[I].GT.1]DXMO([[])=0.
      UX MO(1)=0.
      XMO(111 + 1)=0XMO(111)/FLCAT(111)
```

```
TS3(111)=C.
      DC 102 JJJ=1.111
      TS3(111)=TS3(111)+XM1(JJJ)=XM1(111=JJJ+1)
      IF (III.EC.1) GC TO 103
      TS4(111) = TS3(111) = TS4(1) * R1(111)
      IF(III.EQ.2)GC TU 104
      DC 105 JJJ=2, III1
105
      TS4(III) = TS4(III) = TS4(JJJ) * R1(III = JJJ + 1)
104
      TS4(III) = TS4(III) / RI(1)
      GC TC 106
103
      TS4(III) = TS3(III)/RI(III)
106
      CCNTINUE
      TS5([[])=0.
      DG 107 JJJ=1,III
      TS5(1111)=TS5(1111)+TS4(JJJ)*XK1(111=JJJ+1)
107
      TS6(111) == TS5(111)
      TS7([II]) = TMP1([II]) *R
      IF (III.EC.1) GC TC 108
      TS8(111)=XM1(111)=TS8(1)*R1(111)
      IF(III.EG.21GC TO 109
      OC 110 JJJ=2, III1
110
      TSd(111)=TSE(111)=TS8(JJJ)=R1(III=JJJ+1)
109
      158(III)=158(III)/R1(1)
      GC TC 111
      TS8(I11)=XM1(111)/R1(I11)
108
111
      CENTINUE
      TS9(111)=C.
      OC 112 JJJ=1, III
112
      TSS([11])=TS9([11])+TS8(JJJ)*TS8([11=JJJ+1)
      TTS([[[])=TS7([[])-TS9([[])
      TTT(III) = RI(III) - RO(III)
      TTU(III)=0.
      DC 113 JJJ=1, III
      TTU(111)=TTU(111)+TTS(JJJ)+TTT(111-JJJ+1)
113
      TTV(III) = TTU(III) /CX
      TTW([[[])=TS6(][])=TTV([[])
      TTX(111) = XM1(111) *2.
      IF (III.EC.1) GC TO 114
      TTY([[]])=TTX([[])=TTY([)*R1([]])
      IF(III.EC.21GC TO 115
      DC 116 JJJ=2, III1
      TTY(III) = TTY(III) = TTY(JJJ) = RI(III = JJJ + I)
116
      TTY([[[]=TTY([[])/R]([])
115
      GC TC 117
      TTY(III)=TTX(III)/R1(III)
114
117
      CONTINUE
      .0=(III)OTT
      UC 118 JJJ=1, III
118
      110(111)=110(111)+11Y(JJJ)*TSV([[[-JJJ+L]
      T11(111)=TT0(111)/CX
      TT2(111)=TTW(111)-TT1(111)
      UXM1(111)=112(111)
      X \times 1(111 + 1) = C \times M1(111) / FLCAT(111)
      113(1111=C.
      DC 119 JJJ=1,111
      1T3(111)=TT3(111)+XM2(JJJ)*XM2(I11=JJJ+1)
119
      TT4(111)=TT3(111)-TT4(1)*R2(111)
```

```
IF(III.EG.2)GC 70 121
      DC 122 JJJ=2, 1111
122
      TT4(111)=TT4(111)=TT4(JJJ)*R2(111=JJJ+1)
121
      TT4(111)=1T4(111)/R2(1)
      GC TL 123
120
      TT4(111)=TT3(1:1)/R2(111)
123
      CONTINUE
      TT5(111)=0.
      CC 124 JJJ=1,111
124
      TT5(III)=TT5(III)+TT4(JJJ)*XK2(III=JJJ+1)
      T16(III) == TT5(III)
      TT7(111)=IMP2(1111)*R
      IF (III.EC.1) GC IC 125
      TT8(III) = xM2(III) = TT8(I) * R2(III)
      IF(111.EG.2)GC 10 126
      DC 127 JJJ=2, 1111
      TTE(111)=TT8(111)-TT8(JJJ)+R2(111-JJJ+1)
127
      TT8(111)=TT8(111)/R2(1)
126
      GC TC 128
125
      TT8(III) = xM2(III)/R2(III)
      CONTINUE
128
      TT9(111)=C.
      DC 129 JJJ=1,III
129
      TTS(III)=TTS(III)+TT8(JJJ)*TT8(III=JJJ+1)
      TUS(111) = TT7(111) - TT9(111)
      TUT(III) = R2(III) = R1(III)
      TUU(III)=C.
      DC 130 JJJ=1.111
      TUU([[[]]=TUU([[]])+TUS(JJJ)+TUT([[[[-JJJ+1]
130
      TUV(III)=TUU(III)/CX
      TUW(111)=TT6(111)-TUV(111)
      TUX(III)=XM2(III) #2.
      IF (III.EC.1) GC TC 131
      TUY(111) = TUX(111) - TUY(1) *R2(111)
      IF(III.EC.2)GC TO 132
      DC 133 JJJ=2, [[[]
      TUY(111)=1UY(111)=TUY(JJJ)*R2(1[1=JJJ+1)
133
      TUY(111)=TUY(111)/R2(1)
132
      GC TC 134
131
      TUY(111)=TUX(111)/R2(111)
134
      CONTINUE
      .0=(111)OUT
      DC 135 JJJ=1, [[[
135
      TUO(111) = TUO(111) + TUY(JJJ) * TSO(111-JJJ+1)
      XU\(||||)DUT=(||||)/DX
      TU2(111)=TUM(111)-TU1(111)
      OXM2(111)=TU2(111)
      XM2(III + 1)=DXM2(III)/FLGAT(III)
      IF (III.GT.1)DEC(III)=C.
      DEU(1)=0.
      E0(111 + 1)=DE0(111)/FLCAT(111)
      IF (1111.EC.1) GC TC 136
      TU3(III)=E1(III)=TU3(I)*R1(III)
      1F(111.EG.2)GG TO 137
      OC 138 JJJ=2,1111
      T(J_3(I_1I) = TU_3(I_1I) = TU_3(JJJ) * R1(III = JJJ + I)
133
      TU3([[[]=TU3([[])/R[(])
137
      GC TC 139
```

```
136
               TU3([[[])=E1([[]])/R1([[])
139
               CCNTINUE
               TU5(111)=TU3(111)+TS7(111)
               TU6([[[]=0.
               DC 140 JJJ=1, III
140
               TUO([[[] = TU5([[]) + XM](JJJ) = TU5([[] = JJJ+1)
               TJ7([[[]=0.
               DC 141 JJJ=1, III
               TU7([[[]=]U7(][[]+TU6(JJJ)*XK1([[[=JJJ+1]
               T \cup 8(III) = -T \cup 7(III)
               TU9(111)=C.
               OC 142 JJJ=1, III
               TUS(111) = TU9(111) + XM1(JJJ) * E1(111-JJJ+1)
               TVS([[]])=0.
               DC 143 JJJ=1,[I[
               TVS(111)=TVS(111)+R1(JJJ) *R1(111=JJJ+1)
143
               IF (III.EC.1) GC TC 144
               TVT(111)=TU9(111)-TVT(1)*TVS([11)
                IF(111.EG.2)GC TO 145
               DC 146 JJJ=2.[1][1
               (1+LLL-11))2VT*(LLL)TVT~(]]])TVT=(][])TVT=
146
145
               TVT(111)=TVT(111)/TVS(1)
               GC TC 147
               TVT(III) = TU9(III) /TVS(III)
144
141
               LCNTINUE
               TVV([[]]=0.
               DC 148 JJJ=1, [ ]
               (1+LLL=111)TTT=(LLL)TVT+(111)VVT=(111)VVT
               TVm(III)=TVV(III)/CX
               (III) WVT + (III) SUT = (III) XVT
               IV2(111)=0.
               DC 149 JJJ=1, III
               Ty2(111)=Ty2(111)+TU5(JJJ)+TSV(111-JJJ+1)
               Tv3(III)=Tv2(III)/DX
                TV4(III) = TVX(III) - TV3(III)
               TV6(111)=E1(111)=E0(111)
                TV7(III)=0.
               DC 150 JJJ=1,III
150
               Tv7(III)=Tv7(III)+TS8(JJJ)*Tv6(III=JJJ+1)
                IV8(III)=TV7(III)/DX
               TV9(III) = TV4(III) - TV8(III)
               DEL(III)=TVS(III)
               E1(111 + 1)=DE1(111)/FLOAT(111)
               IF (111.EC.1) GC TC 151
               TwS([11])=E2([11])=TwS(1)*R2([1])
               IFI 111.E4.2)GC TO 152
               UL 153 JJJ=2, 1111
               TwS(III)=TwS(III)=TwS(JJJ)*R2(III=JJJ+I)
153
                TWS([[[])=TWS([[])/R2([])
152
               GC TC 154
               T_{W}S(III) = E2(III)/R2(III)
151
                                                                                                  _____
154
               CENTINUE
                TAU(111) = TAS(111) + TT7(111)
               Twv([[]] = C.
               UC 155 JJJ=1, III
               (1+UU) = 111) U = 111) V = (111) V
しつう
               TAN([11]) = C.
               υί 156 JJJ=1, [ [ [
```

```
Tnw(111)=Thh(111)+TWV(JJJ)+XK2(111-JJJ+1)
150
      ThX(III) = -ThW(III)
      ThY(1111=0.
      UC 157 JJJ=1,111
      TWY(III) = TWY(III) + XM2(JJJ) \times E2(III-JJJ+L)
157
      Th2(111)=0.
      DC 158 JJJ=1,III
158
      TwZ(III)=TwZ(III)+RZ(JJJ)*RZ(III=JJJ+1)
      IF (111.EC.1) GC TC 159
      Thu(III)=Thy(III)=Thu(I)*ThZ(III)
      IF(111.EC.2)GC TC 160
      DC 161 JJJ=2, IIII
      (1+LLL=111)SNT=(LLL)ONT=(111)ONT=(111)ONT
161
160
      ThO(III) = ThO(III) / ThZ(1)
      GC TC 162
159
      TwO(111) = TwY(111) / TwZ(111)
162
      CUNTINUE
      Th2(111)=0.
      CC 163 JJJ=1, III
163
      TW2(III)=TW2(III)+TW0(JJJ)*TUT(III=JJJ+1)
      Th3(III)=Th2(III)/CX
      Tn4(III) = ThX(III) + Th3(III)
      Th9(111)=0.
      DC 164 JJJ=1, III
      TWS(111)=TW9(111)+TWU(JJJ)=TS0(111-JJJ+1)
164
      TXS(III)=TW9(III)/DX
      TXT(111) = Tin4(111) = TXS(111)
      TXV(III) = E2(III) - E1(III)
      Txn(111)=0.
      DC 165 JJJ=1, 111
165
      (1+LLL=111)VXI*(LLL)BTT+(111)VX1=(111)WXT
      TXX(III) = IXW(III)/CX
      TXY(III) = TXT(III) - TXX(III)
      DE2(III) = TXY(III)
      E2(111 + 1)=DE2(111)/FLCAT(111)
      IF (III.GT.1)&IMP1(III) = 0.
      DTMP1(1)=C.
      TMP1(111 + 1) = DTMP1(111)/FLCAT(111)
      IF (III.GT.1)DTMP2(III)=0.
      DTMF2(1)=C.
      TMP2(III + 1)=DTMP2(III)/FLCAT(III)
      [F ([[[.GT.1]DXK1([[[])=0.
      DAK1(1)=0.
      XKI(III + I) = DXKI(III) / FLGAT(III)
      IF (III.GT.1)DXK2([II]=0.
      DXK2(1)=0.
      XK2(III + 1)=CXK2(III)/FLCAT(III)
      1F (111.LT.4)GC TC 1
      1111=111 + 1
      22221=0.
      22222=0.
      76 166 JJJ=1, IIII
      IF(JJJ.LT.III=4)GC TO 166
      L/LZ2=LZZZZ + ABS(RO(JJJ))
160
      ////1=EPS*(AbS(////) + 1.)
      IFIZZZZZ.GT.ZZZZZZZZGG TU I
```

```
22221=0.
     111122=U.
     DC 16/ JJJ=1, [1]
     ZZZZ1=ZZZZ1 +R1(JJJ)
     IF(JJJ.LT.111-4)GC TO 167
     ZZZZZ=ZZZZZ + AdS(R1(JJJ))
157
     CONTINUE
     ZZZZ1=EPS*(AUS(ZZZZZ1) + 1.)
     IFIZZZZZ.GT.ZZZZZZZGC TC L
     22221=0.
     22222=0.
     UC 168 JJJ=1, III1
     11111=1111 +R2(JJJ)
     IF(JJJ.LT.111-4)GC TO 168
     11112=11112 + ABS(R2(JJJ))
     CCNTINUE
168
     ZZZZ1=EPS#(ABS(ZZZZZI) + 1.)
     ZZZZ1=0.
     22222=0.
     OC 169 JJJ=1,1111
     ZZZZ1=ZZZZ1 +XMG(JJJ)
     IF(JJJ.LT.III=4)GG TG 169
     109
     CONTINUE
     ZZZZ1=EPS*(ABS(ZZZZ1) + 1.)
     22221=0.
     22222=0.
     JC 170 JJJ=1, [[]]
     22221 + XM1(JJJ)
     IF(JJJ.LT.III-4)GC TC 170
     LLLZ2=LLLZ2 + AES(XM1(JJJ1)
170
     CCNTINUE
     ZZZZ1=EPS*(A6S(ZZZZZ1) + 1.)
     IF (ZZZZZ.GT.ZZZZZZZZ)GO TO 1
     ZZZZ1=0.
     22222=0.
     CC 171 JJJ=1, IIII
     IF(JJJ-LT-111-4)GC TO 171
     LLZZZ=LZZZZ + ABS(XMZ(JJJ))
171
     CCNTINUE
     ZZZZ1=EPS*(ABS(ZZZZZ1) + 1.)
     IF(ZZZZZ.GT.ZZZZZIJGU TC 1
     22221=0.
     22222=0.
     OC 172 JJJ=1, III1
     ////1=////1 +EO(JJJ)
     IF("JJ.LT.III=4)GC TO 172
     L1LL2 = LLLL2 + ABS(EO(JJJ))
172
     CUNTINUE
     IF(/////2006 TC 1
     12211=0.
     11112=0.
     CC 173 JJJ=1+4111
     42221=22221 +E1(JJJ)
```

```
IF(JJJ.LT.111-4)GC TO 173
      ZZZZZ=ZZZZZ + ABS(E1(JJJ))
173
     CCNTINUE
      22221=EPS*(ABS(22221) + 1.)
      IF(ZZZZZ-GT-ZZZZZI)GC TC 1
      11111=0.
      21112=0.
      DC 174 JJJ=1, IIII
      22221=22221 +E2(JJJ)
      IF (JJJ.LT.111-4)GC TO 174
      ZZZZ2=ZZZZ2 + AUS(E2(JJJ))
      CENTINUE
174
      22221=EPS*(ABS(22221) + 1.)
      IFIZZZZZ.GT.ZZZZZZZGC TC I
      22221=0.
      77772=0.
      UC 175 JJJ=1. IIII
      ZZZZ1=ZZZZ1 +TMP1(JJJ)
      1F(JJJ.LT.111-4)GC TO 175
      ZZZZ=ZZZZZ + AES(TMP1(JJJ))
175
      CENTINUE
      ZZZZ1=EPS*(ABS(ZZZZZ1) + 1.)
      IF(ZZZZZ-GT.ZZZZZI)GC TC 1
      22221=0.
      22222=0.
      DC 176 JJJ=1,1111
      ZZZZ1=ZZZZ1 +1MP2(JJJ)
      IF(JJJ.LT.III=4)GC TO 176
      ZZZZZ=ZZZZZ + ABS(TMP2(JJJ))
176
      CCNTINUE
      ZZZZI=EPS*(ABS(ZZZZZI) + 1.)
      22221=0.
      11112=0.
      DC 177 JJJ=1,1111
      ZZZZ1=ZZZZ1 + XK1(JJJ)
      IFIJJJ.LT.III-41GC TC 177
      7.2222 = 2.2222 + ABS(XK1(JJJ))
117
      CCNTINUE
      12241=EPS* (ABS(22221) + 1.)
      IF(ZZZZZ.GT.ZZZZZZZGC TG 1
      22221=0.
      11112=0.
      CC 178 JJJ=1, 1111
      22221=22221 +xK2(JJJ)
      IFIJJJ.LT.III-4)GC TO 178
      12222=22222 + ABS(XK2(JJJ))
      CLATINUE
178
      ZZZZZ=cPS*(ABS(ZZZZZ1) + 1.)
      IF(////22-GT.Z////IGG TC 1
      GL TC 2
    1 LUNIINUE
    2 CONTINUE
      DI 1/) JJJ=1.NIII
      IF (AUS (RI (JJJ)) . LT. EPS) GC TC 179
      KKK=JJJ
      GC TC 180
171
      CENTIMUE
```

```
22221=0.
180
     KKKI=KKK+1
     UC 181 JJJ=KKK1,NIII
181
     ZZZZ1=ZZZZ1+AUS(R1(JJJ))
     IF(ZZZZI/ABS(R1(KKK)).GE.1)INC=IND + 1
     DC 162 JJJ=1, NIII
     IF (ABS(RI(JJJ)).LT.EPS) GC TC 182
     KKK=JJJ
     GC 1C 183
132
     CENTINUE
183
      22221=0.
     KKK1=KKK + 1
     DC 184 JJJ=KKK1,NI11
134
     ZZZZ1=ZZZZ1+ABS(R1(JJJ))
     IF(ZZZZ1/ABS(R1(KKK)).GE.1)INC=IND + 1
     DC 185 JJJ=1.NIII
     IF(ABS(R1(JJJ)).LT.EPS) GC TO 185
     KKK=JJJ
     GC TC 186
135
     CENTINUE
136
     22221=0.
     KKK1=KKK + 1
     DC 187 JJJ=KKK1,NIII
     ZZZZ1 = ZZZZ1+ABS(R1(JJJ))
187
     IF(ZZZZI/ABS(RI(KKK)).GE.1)IND=IND + 1
     DC 188 JJJ=1, NIII
     IF(ABS(R2(JJJ)).LT.EPS) GC TO 188
     KKK=JJJ
     GC TC 189
     CENTINUE
133
189
     22221=0.
     KKK1 = KKK + 1
     DC 190 JJJ=KKK1,NIII
100
     ZZZZ1=ZZZZ1+AES(RZ(JJJ))
     IF(ZZZZ1/4BS(R2(KKK)).GE.1)INC=IND + 1
     DC 191 JJJ=1,NIII
     IF(ABS(R2(JJJ)).LT.EPS) GC TC 191
     KKK=JJJ
     GC TC 192
191
     CUNTINUE
     22221=0.
192
     KKKI=KKK + 1
     DC 193 JJJ=KKK1,NIII
193
     ZZZZ1=ZZZZ1+ABS(R2(JJJ))
     JC 194 JJJ=1.NIII
     IF(ABS(R2(JJJ)).LT.EPS) Gu TO 194
     KKK=JJJ
     GC TC 195
194
     CCNTINUE
195
     22221=0.
     KKK1=KKK + 1
     DC 196 JJJ=KKK1,NIII
135
     222/1=22221+ABS(R2(JJJ))
     IF(ZZZZI/ABS(RZ(KKK)).GE.1)INC=IND + 1
     DC 197 JJJ=1,NIII
     IF(ABS(R1(JJJ)).LT.EPS) GC TC 197
     KKK=JJJ
```

```
GC TC 198
197
      CUNTINUE
138
      22221=0.
      KKKL=KKK + 1
      DE 199 JJJ=KKK1.NIII
199
      ZZZZ1=ZZZZ1+ABS(RI(JJJ))
      IF(ZZZZI/ABS(RI(KKK)).GE.I)INC=IND + I
      DC 200 JJJ=1, NIII
      IF (ABS(TVS(JJJ)).LT.EPS) GC TC 200
      KKK=JJJ
      GC TC 201
200
      CCNTINUE
201
      22221=0.
      KKK1=KKK + I
      DC 202 JJJ=KKK1,N[II
202
      ZZZZI=ZZZZI+AES(TVS(JJJ))
      IF(ZZZZI/AUS(TVS(KKK)).GE.1)INU=INU + 1
      DE 203 JJJ=1,NIII
      IF (ABSIR2(JJJ)).LT.EPS) GU TG 203
      KKK=JJJ
      GC TC 204
203
      CUNTINUE
204
      22221=0.
      KKK1=KKK+1
      DC 205 JJJ=KKK1,NIII
235
      ZZZZ1=ZZZZ1+AES(K2(JJJ))
      IF(ZZZZ1/ABS(R2(KKK)).GE.1)IND=IND + 1
      DC 206 JJJ=1,NIII
      IF (ABS(TWZ(JJJ)).LT.EPS) GC TC 200
      KKK=1JJ
      GC TC 207
206
      CCNTINUE
207
      22721=0.
      KKK1≈KKK + 1
      DO 208 JJJ=KKK1,NIII
      ZZZZ1=ZZZZ1+AUS(TWZ(JJJ))
      IF (ZZZZZZZABS (TWZ (KKK)).GE.1)IND=IND + 1
      ALII=ALII + 1
      ZZZE(L)=RC(NIII)
      DC 209JJJ=2,NIII
      ZZZB(JJJ)=RO(NIII-JJJ+I) + T*ZZZB(JJJ-I)
209
      YNE w(1) = 2228(NIII)
      ZZZB(L)=RL(NIIL)
      OC 210JJJ=2,NIII
210
      ZZZE(JJJ)=P1(NIII=JJJ+1) + T*ZZZB(JJJ-1)
      YNEW(2)=2228(NIII)
      ZZZE(1)=RZ(NI111)
      DC 211JJJ=2+N111
      11/E(JJJ)=k2(N111~JJJ+1) + 1*2220(JJJ-1)
211
      YNEW(3)=2220(N[II])
      ZZZE(1) = XMO(NIII)
      DC 212JJJ=2.N1I1
      (1111) = XNO(NIII = JJJ+1) + T*222B(JJJ-1)
212
      YNON14)=2228(N111)
      LLLU(1)=XM1(NIII)
      DC 213JJJ=2+NIII
      172F(JJJ)=XMI(NIII=JJJ+1) + I=222d(JJJ=1)
      YNEW(5)=ZZZE(NIII)
```

	The state of the s
	22ZB(1)=XM2(NIII)
	DC 214JJJ=2,NIII
214	ZZZB(JJJ)=XM2(NIII-JJJ+1) + T*ZZZB(JJJ-1)
	YNEW(0)=ZZZ8(NIII)
	ZZZd(1)=E0(NIII)
	OC 215JJJ=2,NIII
215	ZZZB(JJJ)=EG(NIII-JJJ+1) + T*ZZZB(JJJ-1)
	YNEW(7)=ZZZE(N111)
	ZZZ(1) = E1(NIII)
	DC 216JJJ=2.NIII
216	Z7ZE(JJJ)=E1(NIII≈JJJ+1) + T*ZZZB(JJJ=1)
210	
	YNEW(8) = ZZZB(NIII)
	ZZZB(1) = E2(NIII)
	DE 217JJJ=2.NIII
217	
	YNEW(9)=ZZZ@(NIII)
	ZZZB(1)=TMP1(NIII)
	OC 218JJJ=2,NIII
218	ZZZB(JJJ)=TMP1(NIII-JJJ+1) + T*ZZZB(JJJ=1)
-	YNEW(10) = ZZZB(NIII)
	ZZZE(1)=TMP2(NIII)
	DC 219JJJ=2,NIII
219	ZZZB(JJJ)=TMP2(NIII=JJJ+1) + T*ZZZB(JJJ=1)
219	
	YNEW(11)=7228(NIII)
	ZZZB(1)=XK1(NIII)
	UC 220JJJ=2.NIII
220	ZZZE(JJJ)=XK1(NIII=JJJ+1) + T*ZZZB(JJJ=1)
	YNE%(12)=222B(NIII)
	ZZZB(1)=XK2(NIII)
	DC 221JJJ=2,NIII
221	ZZZB(JJJ)=XK2(NII=JJJ+1) + T*ZZZB(JJJ=1)
	YNEW(13)=ZZZB(NIII)
	RETURN
	END
	21.0
	
· · · · · · · · · · · · · · · · · · ·	
	
•	
	

References

- 1. J. E. Fromm, "The Time-dependent Flow of an Imcompressible Fluid," Methods in Comput. Physics, 3, New York, p. 346 (1964).
- 2. R. D. Richtmeyer and K. W. Morton, <u>Difference Methods For Initial</u> Value Problems, Interscience, New York (1967).
- 3. O. C. Zienkiewicz, <u>The Finite Element Method</u>, Third Edition, McGraw-Hill, London (1977).
- R. L. Brown, "Investigation of the Computational Aspects of the Numerical Solution of Flow on a Cone." Report 22, Vol. II, Research Reports of 1978 USAF-ASEE Faculty Research Program, (1978).
- 5. S. C. Lubard, and W. S. Helliwell, "Calculation of the Flow on a Cone at High Angle of Attack," pp. 5-12, RDA-TR-150, R&D Associates, Santa Monica, CA (1973).
- 6. J. Douglas, and G. E. Gunn, "A General Formulation of Alternating Direction Methods," Num. Math., 6, pp. 228-253 (1964).
- 7. R. M. Beam, and R. F. Warming, "An Implicit Finite-Difference Algorithm for Hyperbolic Systems in Conservation Law Form,"

 Journal Computational Physics, 22, pp. 87-110 (1976).
- 8. D. W. Peacemen, and H. H. Rachford, "The Numerical Solution of Parabolic and Elliptical Differential Equations," SIAM Journal, 3, pp. 28-41 (1955).
- 9. W. S. Helliwell, and S. C. Lubard, "An Implicit Method for Three-Dimensional Viscous Flow with Application to Cone at Angle of Attack," Report TR-0074(4450-64)-1, The Aerospace Corporation, Santa Monica, CA (1973).
- 10. J. M. Hyman, "A Method of Lines Approach to the Numerical Solution of Conservation Laws," Advances In Computer Methods for Partial Differential Equations III, pp. 313-321, R. Vichnevetsky and R. S. Stepleman (ed.) IMACS (1979).
- 11. G. Dahlquist, "A Special Stability Problem for Linear Multistep Methods," <u>BIT</u>, <u>3</u>, pp. 27-43 (1963).
- 12. S. C. Lubard and W. S. Helliwell, "Calculation of the Flow on a Cone at High Angle of Attack," pp. 26-30, RDA-TR-150, R&D Associates Santa Monica, CA (1973).
- 13. R. M. Beam and R. F. Warming, "On the Construction and Application of Implicit Factored Schemes for Conservation Laws," SIAM-AMS Proceedings of Symposium on Computational Fluid Dynamics, Vol. II (1977).

- 14. R. L. Brown, "Stability of Sequences Generated by Nonlinear Differential Systems," Math. Comp., 33, pp. 637-645 (1979).
- 15. G. Dahlquist, "G-stability is Equivalent to A-stability," <u>BIT</u>, <u>18</u>, pp. 384-401 (1979).
- 16. N. Rouche, P. Habets, and M. Laloy, <u>Stability Theory by Liapunov's</u> Direct Method, Springer-Verlag, New York (1977).
- 17. K. R. Kovach, "A Precompiler for Deriving the Time Series Solution to Systems of Differential Equations," M.S. Thesis, University of Virginia, Charlottesville, VA (1980).
- 18. D. H. Norrie, G. de Vries, The Finite Element Method, Academic Press, New York (1973).
- 19. A. R. Mitchell, R. Wait, The Finite Element Method in Partial Differential Equations, John Wiley & Sons, New York (1977).
- 20. A. C. Hindmarsh, "The LLL Family of Ordinary Differential Equation Solvers," UCRL-78129 (1976).
- 21. G. D. Byrne, A. C. Hindmarsh, "A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations," <u>ACM TOMS</u>, <u>6</u> (1975).

DISTRIBUTION LIST

Copy No.	
1 - 16	Air Force Office of Scientific Research Bolling Air Force Base Washington, D. C. 20332
17 - 18	R. L. Brown
19	J. M. Ortega
20	I. A. Fischer Office of Sponsored Programs
21 - 22	E. H. Pancake Clark Hall
23	RLES Files

0692:jt

UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate enrollment of approximately 1,000 students with a graduate enrollment of 350. There are approximately 120 faculty members, a majority of whom conduct research in addition to teaching.

Research is an integral part of the educational program and interests parallel academic specialties. These range from the classical engineering departments of Chemical, Civil, Electrical, and Mechanical to departments of Biomedical Engineering, Engineering Science and Systems, Materials Science, Nuclear Engineering, and Applied Mathematics and Computer Science. In addition to these departments, there are interdepartmental groups in the areas of Automatic Controls and Applied Mechanics. All departments offer the doctorate; the Biomedical and Materials Science Departments grant only graduate degrees.

The School of Engineering and Applied Science is an integral part of the University (approximately 1,400 full-time faculty with a total enrollment of about 14,000 full-time students), which also has professional schools of Architecture, Law, Medicine, Commerce, and Business Administration. In addition, the College of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engineering research program. This University community provides opportunities for interdisciplinary work in pursuit of the basic goals of education, research, and public service.

